
THE CANVAS MODE: RAPID PROTOTYPING FOR THE
DECIBEL SCOREPLAYER

Aaron Wyatt Lindsay Vickery Stuart James
Monash University

Sir Zelman Cowen School of
Music

Edith Cowan University
Western Australian Academy of

Performing Arts

Edith Cowan University
Western Australian Academy of

Performing Arts

ABSTRACT

This paper talks about recent developments in the
Decibel ScorePlayer project, notably the introduction of
a canvas mode that allows for other applications to send
drawing commands to the player via OSC. It outlines the
object model that has been developed to allow for the
creation of hierarchies of drawn objects, the commands
that can be used to create and control these, and the way
in which scores can be developed to take advantage of
this new mode. It is hoped that this addition will give
composers the flexibility to experiment with new score
paradigms while being able to leverage the existing
strengths of the platform.

1. INTRODUCTION

The Decibel ScorePlayer was always designed to be a
modular platform (Wyatt and Hope 2013). While the
main player window is responsible for controlling the
user interface and networking functions, the task of
drawing the score is passed off to other modules which
can be swapped in and out to allow for the
implementation of many different types of scores, from
simple scrolling scores to far more complicated, non-
linear ones. On a more open platform, additional
rendering modules could easily be compiled as libraries
to be added by the user as necessary, but unfortunately
the highly closed off nature of iOS (and in fact most
tablet computing environments) means that this is simply
not possible1. The only way for new types of scores to be
implemented is for the necessary rendering code to be
included in the main package that is made available from
the App Store. The creation of a canvas mode for the
ScorePlayer is an attempt to overcome this limitation by
allowing composers to directly control the drawing
surface of the player from an external application using
commands sent via the Open Sound Control (OSC)
protocol (Wright 2002; Hope, Wyatt and Vickery 2015).
In this way, new score paradigms can be quickly
developed, prototyped, and even distributed without the
need for any code to be accepted into the App Store. This
paper will discuss the first publicly released
implementation of this new feature, detailing how to

1While it is technically possible to dynamically load a library in iOS in
some circumstances, attempting to do so would see an app rejected
from the App Store (DeVille 2104).

interface with it from outside the app, and outlining
possible future paths for further development.

2. OBJECT MODEL

While an early proof of concept version of the canvas
mode had been thrown together in 2016 during an
exchange in Hamburg between the Decibel New Music
Ensemble and the ZM4 Research Group x (James et al.
2017), this version was very limited in scope and hadn’t
been designed in a way that allowed for easy future
expansion. While layers could be created and removed,
and images could be loaded into them, there was no
ability to create layer hierarchies, and little provision for
the implementation of other types of objects. The revised
canvas mode overcomes these shortcomings by having a
much more strongly defined object model, where
commands are addressed to specific objects, and where
objects can be placed within other, parent objects.

In its current iteration, the canvas mode implements six
different types of objects: layers, scrollers, text, glyphs (a
special case of the text object used as a convenient
shortcut to display symbols from the bravura music font
(Steinberg Media Technologies GmbH. 2018)), staves,
and lines. With the exception of lines, which are simply
drawn within the coordinate space of their parent object,
all of these objects can also be used as containers for
other objects. Changing the position of the parent object
on the canvas will move all of the objects contained
within it as one. Likewise, changing the opacity of the
parent object will affect the rendering of the entire group,
and removing the parent removes all of the child objects
along with it. This makes it possible to very easily
manipulate large groups of objects using a relatively
small number of network commands.

While some of the more complex objects will be
discussed in more depth later, the most basic object is the
layer object. It consists of a simple rectangular region on
the canvas which is empty when first created, but which
can be set to contain either a flat colour or an image. As
with most of the objects, its location on the canvas or
within its parent object’s coordinate space is made with
reference to its upper left corner. Figure 1 shows the
result of placing a red layer at (10,10) on the canvas, and
an image layer at (20, 20) on the red layer. An important
thing to note is that the contents of a child layer can spill
over the boundary of a parent layer, although there may

ACMC2018 Proceedings 106 ISSN 2206-5296

be a command added in future releases to allow the
composer to change this behaviour. Until then, if you
want to prevent this from happening, the easiest
workaround is to instead use a scroller as a container
without setting it in motion. This way the contents will
be masked to the boundary of their parent.

Figure 1. Nested layers in the player.2

It is possible for individual parts to be created so that
each musician can see their own, specific material. The
creation command of all objects, regardless of their type,
requires the assignment of a unique name, and an
assignment to one of these parts. (The number of
available parts is determined in the score file, as
described in the next section.) Anything assigned to part
number 0 will appear on all of the parts. Unless a parent
object is set to appear on all parts in this manner, any
child object will inherit the path number setting from its
parent object, regardless of the part that the composer
attempts to assign to it. Moving between these parts in
the ScorePlayer itself is as simple as swiping up or down.
(This is the same mechanism used to switch between
parts in other types of scores, so it is one that should be
familiar to the end user.)

3. SCORE FILE

As with other score types, scores that use canvas mode
consist of a standard zip file with its extension changed
to .dsz (Wyatt and Hope 2013). This file contains all of
the image resources needed by the score, in jpeg or png
format, as well as a couple of xml files (W3C 2013) that
define the score’s metadata, and set any additional
options. This file is then imported into the player via
iTunes’ file sharing feature. The main xml file that
defines the score is named opus.xml and a typical
example of one is shown below:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE opus SYSTEM "opus.dtd">
<opus>
 <score>
 <name>Canvas Test</name>

2The bunnies used in the canvas test score have been taken from Kim
Krans’ artwork for the cover of Tape Op. issue #88 (Krans 2012).

 <composer>Aaron Wyatt</composer>
 <type>Canvas</type>
 <duration>0</duration>
 <prefsfile>canvas.xml</prefsfile>
 </score>
</opus>

Most of the settings are common to other score types
and are fairly self explanatory, but there are a couple of
things worth noting. Obviously, the <type> is set to
“Canvas", but the other point of interest is the <duration>
tag: this can either be set to zero or any number of
seconds. If zero (or negative), the player only displays
the Reset button to the user, and the navigation bar and
status bar remain visible. If set to a positive value, then
the Play button is also displayed, and pressing it sends
the usual /Control/Play command over the network,
starts the clock, and hides the navigation bar until the
specified time limit is reached. The obvious advantage
of this is that it makes a larger drawing surface available,
even if a composer has no intention of making use of the
timing functions of the player. (The size of the canvas is
1024x768 when in landscape mode, and the status and
navigation bar clip 70 pixels off this height.)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE canvas SYSTEM "canvas.dtd">
<canvas>
 <parts>2</parts>
</canvas>

The preferences file pointed to by the opus.xml file only
has a limited number of possible options. The most
important defines the number of available parts that can
be drawn to. (In the player, you can move between these
by swiping up or down, just as you do with other types
of score.) The only other option is the <clearonreset>
setting. This determines whether the canvas is cleared
by pressing the Reset button in the player. If undefined,
it is set to “yes.”

4. COMMAND STRUCTURE

Once connected to the player, drawing commands can
be sent from an external device via OSC. All of these
have an OSC address starting /Renderer/Command, with
the name of the object that you wish to manipulate, and
the command that you wish to send to it being added as
the final two components. So, for example, to add a
layer to the canvas you would send a command with the
address “/Renderer/Command/canvas/addLayer” to the
player. The arguments would include the name of the
layer to be created, the part for it to be assigned to (or 0
for the layer to be placed on all parts) and then
coordinate data. A full list of drawing commands can be
found in the appendix at the end of this paper.

While any application that can send and receive OSC
messages can be used to control the ScorePlayer in
canvas mode, a reference Max patch is available from

ACMC2018 Proceedings 107 ISSN 2206-5296

the Decibel New Music website that can be used for this
purpose (Decibel New Music 2018). Additionally, a
library has been developed to allow externals to be
quickly and easily written in python, with a plan
towards releasing it for distribution via the Python
Package Index, or PyPI for short (Python Software
Foundation 2018). Both of these solutions use Bonjour
(Apple Inc 2013) for service discovery, and are able to
find any iPads running the ScorePlayer on the local
network, as long as multicast traffic is not blocked.3

4.1. Creating Externals in Python

The python scoreplayer_external library defines two
python classes: scorePlayerExternal and scoreObject.
The first class is used to make a connection to the iPad,
opening a UDP listening socket and letting the iPad
know which port to send its replies to. The second
object is designed to represent the objects that populate
the canvas. It acts as a wrapper so that OSC commands
can be sent in a python like way. So a command like
/Renderer/Canvas/clear becomes simply canvas.clear().

Connecting to an iPad requires only a few lines of code,
as demonstrated below:

#!/usr/bin/env python
from scoreplayer_external import scoreObject,
scorePlayerExternal
from threading import Event

finished = Event()
external = scorePlayerExternal()
external.selectServer()
canvas = external.connect(onConnect)
finished.wait()
external.shutdown()

After creating a new scorePlayerExternal object, the
selectServer() method checks for any iPads on the
network and presents the following prompt:

Choose an iPad to connect to
1: bojack (Canvas Test)
Or
2: Refresh List
Enter Selection:

Each line lists the device name of an iPad found running
the ScorePlayer, along with the name of the score that it
currently has loaded. Upon making a selection, the
connect(connectionHandler) method is called. This
passes a function to the method as a variable, which is
run once the scorePlayerExternal receives a positive
response from the iPad. The method also returns a
scoreObject named “canvas” which can then be used as a
starting point to spawn more objects. The penultimate
line keeps the script running until the onConnect

3I’m looking at you, Monash eSolutions.

function signals to the main thread that it has finished, at
which point it’s safe to shut down the external.
 If it’s not possible to use Bonjour for service discovery,
and you know the IP address of the iPad that you wish to
connect to, then in place of the selectServer() and
connect(connectionHandler) methods you can call the
connectToAddress(address, port, connectionHandler)
method. This also returns the appropriate scoreObject
pointing to the canvas.

The connection handler is where the bulk of the drawing
code should reside. The following sample connection
handler code clears the canvas, creates a basic scroller
(called ‘scroll’ placed in part number 1) into which an
image is loaded, and places a bass clef onto the scroller.
The line, placed on the canvas instead of the scroller,
remains stationary and acts as a playhead.

def onConnect():
 canvas.clear()
 scroll = canvas.addScroller('scroll', 1, 10,
10, 300, 200, 500, 20.0)
 scroll.loadImage('modulation.png')
 line = canvas.addLine('line', 1, 25, 10, 25,
210, 5)
 clef = scroll.addGlyph('clef', 1, 50, 100)
 clef.setGlyphSize(72)
 clef.setColour(0, 0, 128)
 clef.setGlyph('fClef')
 input("Press Enter to start...")
 scroll.start()
 finished.set()

After the initial set up is completed, the script waits for
a keyboard prompt from the user before setting the
scroller in motion. As soon as that is done, it sets the
finished event so that the main thread can finally
complete and the script can exit. Below is the result of
the script as seen in the ScorePlayer.

Figure 2. The result of the above code on initial set up
and just after setting the scroller in motion.

A note about z-order: when objects are created they
are placed above existing objects that share the same
parent object. This is why, in the above example, the
playhead line appears above the scroller object. As
the clef glyph belongs to the scroller, it renders
below the playhead, just like its parent. There is
currently no way to change where objects are located
in the stack once they have been created, but it

ACMC2018 Proceedings 108 ISSN 2206-5296

should be relatively trivial to implement a
moveAbove(object) and moveBelow(object) method
in future releases.

5. ANIMATION FEATURES

While the scroller is the most sophisticated animated
component of the player that is currently available, it is
possible to apply simple animations to most of the other
object types. The “move” and “fade” commands allow
you to specify a change in an object’s location or opacity
that will occur over a specified period of time. The fade
command can be applied to any object, while the move
command can be applied to any object except for lines. If
you need to have a line move across the screen, you can
achieve this by drawing the line into a layer, and then
applying an appropriate move command to that.

The scroller object allows for a larger image to be
scrolled horizontally at a set rate through a fixed viewing
window. The viewing window itself is defined by the
usual position and size coordinates that are passed to the
object on creation. A few additional parameters, also
passed at creation, are used to define the behaviour of the
scroller while animated. The scrollerWidth parameter
determines the width of the layer to be scrolled through
the viewing window, while the scrollerSpeed defines the
rate at which this occurs in pixels per second. Setting a
negative value for scrollerSpeed causes the scroller
content to move backwards, to the right of screen. These
values can be changed at any time, and the scroller can
be set in motion or stopped using the “start” and “stop”
commands.

As the scroller layer moves towards the limits of its
motion, any material underneath the scroller will become
visible. (This is represented by the shaded area in Figure
3.) Once the layer makes it outside the frame of the
viewing window, animation is stopped and the layer
remains fixed, just out of view. The animation state of
the scroller isn’t changed though: changing the
scrollerPosition value so that the layer is brought back
into view will resume animation without the need to send
an additional “start” command. Changing the
scrollerSpeed to a negative value in this case would also
cause animation to automatically resume, with the
contents of the scroller moving back in the opposite
direction.

Figure 3. The scroller object as the scroller layer
moves towards the limit of its motion.

6. THE STAVE OBJECT

The stave object brings limited access to traditional
notation to the canvas mode. Since the ScorePlayer is
geared more towards graphical notation, a greater
emphasis is placed on the proportional placement of
notes (particularly useful when scrolling a stave past a
playhead) than on traditional bar structure. The size of
the object defines the length of the stave lines and the
height from the top stave line to the bottom one. Placing
one or more clefs on the stave allows for the easy
placement of notes using a syntax based on scientific
pitch notation (C4 is middle C), with some additional
modifiers: # is a sharp, + is quarter sharp, - is a quarter
flat, b is flat, and n is a natural. So A#+4 would be the A
three quarter sharp above middle C.

Notes and clefs are placed by specifying their position
in pixels from the left hand edge of the stave object. At
present, the placement code isn’t particularly smart: the
player will do exactly what it’s told, regardless of
whether that means there will be a collision of notes or
accidentals. Future releases may do something to
address this, at least on the accidental front. The option
to honour the exact placement of noteheads, no matter
how crowded the stave may be, should be maintained in
the future. (Most likely as the default option to retain
backwards comparability with existing scores.)

Following is some example python code that shows the
basic usage for the stave object:

def onConnect():
 canvas.clear()
 stave = canvas.addStave('stave', 0, 10, 100,
600, 72, 2)
 stave.setClef('treble', 40)
 stave.addNotehead('C#+4', 120, 1)
 stave.addNote('Gbb3', 200, 32)
 stave.setClef('alto', 400)
 stave.addNotehead('D-5', 500, 0)
 finished.set()

The addNote and addNotehead commands have a very
similar syntax: the first two arguments are the note to be
drawn and it’s horizontal position along the stave
respectively. The final argument for addNotehead is an
optional argument that defines whether the notehead is
filled or not. (The default is that it is filled.) The
addNote command takes the note duration as it’s final
argument, with 0 being a breve, 1 being a semibreve, 2 a
minim, 4 a crotchet, 8 a quaver and so on. If the size of
a stave is changed, all of the glyphs are scaled
accordingly, with the horizontal position of notes
preserved as is: no scaling is performed along the
horizontal axis. The output of the above code is shown
below in Figure 4.

ACMC2018 Proceedings 109 ISSN 2206-5296

Figure 4. The stave object.

In addition to the methods included as part of the stave
object, it’s possible to manually place musical symbols
on the canvas using glyph objects. These are a special
case of the text object: instead of displaying a string, they
display a lone character from the bravura music font. The
type of glyph to display can be selected by using the
setGlyph command, which takes a single argument: the
canonical name of the desired glyph as defined by the
SMuFL standard (Spreadbury and Piéchaud 2015).
Currently only a limited set of glyphs are implemented,
but this can easily be expanded in the future. The
geometry of the glyphs is designed to make them as easy
to use as possible. The size of the glyph object should be
set to the height of a stave that it is meant to fit on, and
the position of the glyph is defined not by its top left
corner as with other objects, but by a sensible middle
point. In the case of notes, this is the centre of the
notehead. For clefs, it is at the height of the note defined
by the clef (C, F or G). Some examples of this can be
seen in Figure 5 below: the centre of the crosshairs points
to the location of the object as defined by its position
coordinates, and the horizontal lines either side of the
centre show the distance between stave lines.

Figure 5. A sample of some of the available glyphs
showing their centre points.

Any glyphs that haven’t been implemented yet can of
course be placed on the score using a simple text object
instead, sent the appropriate unicode character. The only
drawback to this being that placement of the object won’t
be quite as simple. That said, it should be possible to find
an appropriate vertical centre point at a y value of twice
the height of the font.

7. CONCLUSIONS

While the canvas mode is still in a relatively early stage
of development, there should already be sufficient
drawing commands available to make it a useful tool to
those who want to extend the abilities of the ScorePlayer
beyond the extant score types. One of the most
commonly asked questions involving the ScorePlayer
that the members of Decibel have received over the years

has been whether it’s possible to change the speed of a
scrolling score at certain points in a work. Now, with the
more fine grained controls offered by the canvas mode, it
is. Those who’ve felt constrained by the conditions
imposed by the built in forms now have the freedom to
experiment, and with the existence of a python library,
this should be achievable with minimal programming
experience. While greater technical knowledge is
required to take advantage of these new abilities, the
learning curve shouldn’t be too steep, and it is hoped that
this paper, along with the resources that it references,
will serve as a solid starting point for those who wish to
tinker.

8. REFERENCES

Apple Inc. “Bonjour Overview.” Last Modified April 23
2018.
https://developer.apple.com/library/archive/documentatio
n/Cocoa/Conceptual/NetServices/Introduction.html.

Decibel New Music. “The Decibel ScorePlayer.”
Accessed October 26, 2018.
http://www.decibelnewmusic.com/decibel-
scoreplayer.html.

DeVille, D. “Dynamic linking on iOS.” Last modified
April 2, 2014. http://ddeville.me/2014/04/dynamic-
linking.

Hope, C., Wyatt, A., and Vickery, L. “The Decibel
ScorePlayer: New Developments and Improved
Functionality.” Proceedings of the 2015 ICMC
Conference. Denton, USA: International Computer Music
Association, pp. 314-317.

James, S., Hope, C., Vickery, L., Wyatt, A., Carey, B., Fu,
X., and Hadju, G. 2017. “Establishing connectivity
between the existing networked music notation packages
Quintet.net, Decibel ScorePlayer and MaxScore.”
Proceedings of the Tenor 2017 Conference. A Coruña,
Spain: TENOR, pp. 171-183.

Krans, K. “How a Bunny Sounds: About.” Accessed
October 26, 2018.
https://howabunnysounds.com/pages/about.

Python Software Foundation. “Python Package Index.”
Accessed October 26, 2018. https://pypi.org/.

Spreadbury, H., and Piéchaud, R. “Standard Music Font
Layout (SMuFL).” Proceedings of the Tenor 2015
Conference. Paris, France: TENOR, pp. 147-154.

Steinberg Media Technologies GmbH. “SMuFL:
Standard Music Font Layout.” Accessed October 26,
2018. https://www.smufl.org/fonts/.

WC3. “Extensible Markup Language (XML) 1.0 (Fifth
Edition).” Last modified February 7, 2013.
https://www.w3.org/TR/xml/.

Wright, M. “The Open Sound Control 1.0 Specification.”
Last modified March 26, 2002.
http://opensoundcontrol.org/spec-1_0

Wyatt, A., and Hope., C. 2013. “Animated music notation
on the iPad (or: Music stands just weren’t designed to
support laptops).” Proceedings of the 2013 ICMC

ACMC2018 Proceedings 110 ISSN 2206-5296

Conference. Perth, Australia: International Computer
Music Association, pp. 201-207.

9. APPENDIX

Here is a full list of commands for the canvas mode of
the ScorePlayer. This is accurate for version 1.9.2 of the
software. Future versions will add more commands, but
should retain backwards compatibility with this current
list.

If sending OSC messages directly, remember to prepend
these commands with /Renderer/Command/objectname.
If using the python library these are the methods called
on your object. In python, any numerical values given as
arguments will automatically be cast to the variable type
expected by the player. In other environments, you will
have to manually take this into consideration. All
arguments are either strings (s), integers (i), or floats (f).
Optional variables are listed with their defaults values.

addGlyph(name(s), part(i), x(i), y(i), glyphSize(f)=36.0)
Applies to: canvas, layer, scroller, text, glyph, stave
Adds a music symbol from the bravura font to the object.
Name must be a unique identifier: the glyph won’t be
created if an object of that name already exists. Part
specifies the part to be drawn into, or 0 for the object to
be placed in all parts. (If the parent object doesn’t exist
in all parts, then this is ignored and this value is instead
inherited from the parent object.) Unlike other objects,
the x and y position coordinates refer not to the top
lefthand corner of the glyph but rather to a sensible point
within it (like the centre of a notehead). The size of the
glyph is set to 36 if omitted. Creating the glyph does not
display anything immediately: the setGlyph command
must be used to specify the actual glyph to be loaded.

addLayer(name(s), part(i), x(i), y(i), width(i), height(i))
Applies to: canvas, layer, scroller, text, glyph, stave
See the addGlyph command for information about the
name and part arguments. Adds a layer to the parent
object. The x and y position coordinates refer to the
location of the top left corner of the layer within the
parent object’s coordinate space. Width and height are in
pixels. When first loaded, the layer is empty: the
loadImage or setColour commands can be used to
change this.

addLine(name(s), part(i), x1(i), y1(i), x2(i), y2(i),
lineWidth(i))
Applies to: canvas, layer, scroller, text, glyph, stave
See the addGlyph command for information about the
name and part arguments. Draws a line on the parent
object from the start point (x1, y1) to the end point (x2,
y2). The width of the line is given by the lineWidth
argument, and the default colour is black.

addNote(pitch(s), position(i), duration(i))
Applies to: stave

Draws a note at the horizontal point on the stave given
by the position argument. The pitch is of the form Ax4,
where x can be omitted for a not without any accidental
or one of the following: ## double sharp, #+ three quarter
sharp, # sharp, + quarter sharp, n natural, - quarter flat, b
flat, b- three quarter flat, bb double flat. C4 is middle C.
The duration can be one of the following: 0 breve, 1
semibreve, 2 minim, 4 crotchet, 8 quaver, 16 semiquaver,
32 demisemiquaver.

addNotehead(pitch(s), position(i), filled(i)=1)
Applies to: stave
See the addNote command for information about the
pitch and position arguments. The filled argument
determines whether the notehead is filled (1) or not (0).
If omitted the default is a filled notehead.

addScroller(name(s), part(i), x(i), y(i), width(i),
height(i), scrollerWidth(i), scrollerSpeed(f))
Applies to: canvas, layer, scroller, text, glyph, stave
See the addGlyph command for information about the
name and part arguments. Adds a scroller to the object
with a viewing window whose location and size is
determined by the x, y, width, and height arguments. The
scrollerWidth sets the width of the scrolling layer that
can be set in motion from right to left through the
viewing window. The scrollerSpeed specifies how fast
the scrolling layer will move in pixels per second.
Setting a negative value for this will reverse the direction
of the scroller.

addStave(name(s), part(i), x(i), y(i), width(i), height(i),
lineWidth(i))
Applies to: canvas, layer, scroller, text, glyph, stave
See the addGlyph command for information about the
name and part arguments. Adds a stave to the object. The
x and y position coordinates refer to the left end of the
top stave line. The width and height specify the length of
the stave lines and the distance from the top to bottom
stave line respectively. The lineWidth argument sets the
width of the stave lines.

addText(name(s), part(i), x(i), y(i), fontSize(f)=36.0)
Applies to: canvas, layer, scroller, text, glyph, stave
See the addGlyph command for information about the
name and part arguments. Adds text to the object. The x
and y position coordinates refer to the top left corner of
the bounding box of the text. If not specified, the
fontSize is 36. No text is drawn immediately: the setText
command should be used to achieve this.

clear()
Applies to: canvas, stave
When applied to the canvas, this method removes all of
the existing objects and any reference to them. When
applied to the stave, this method removes all notes and
clefs, leaving a blank stave.

clearImage()
Applies to: layer, scroller

ACMC2018 Proceedings 111 ISSN 2206-5296

Removes the currently loaded image. (This has no effect
on any child objects in the layer.)

fade(opacity(f), duration(f))
Applies to: canvas, layer, scroller, text, glyph, stave, line
Sets the opacity of an object and animates the transition
over a period of time specified in seconds by the duration
argument.

loadImage(imageFile(s), autoSize(i)=0)
Applies to: layer, scroller
Loads an image into the object. The source of the image
must be a file that was placed in the current score’s .dsz
file at the time of its creation. The autoSize argument is
disabled by default. If set to 1 then the object’s size will
be altered to accommodate the image. In the case of a
scroller object, the height of the scroller and the width of
the scrolling layer will be adjusted to fit this. (There is no
change made to the width of the viewing window.)

move(x(i), y(i), duration(f))
Applies to: canvas, layer, scroller, text, glyph, stave
Sets the position of an object and animates the transition
over a period of time specified in seconds by the duration
argument.

remove()
Applies to: canvas, layer, scroller, text, glyph, stave, line
Removes the object from its parent object. All references
to the object are removed and it cannot be reused.

removeClef(position(i))
Applies to: stave
Removes the clef at the specified horizontal position on
the stave. This is only allowed if doing so doesn’t leave
any ambiguous notes or noteheads on the stave. (The
leftmost clef cannot be removed unless there are no notes
between it and the next clef.)

removeNote(pitch(s), position(i))
Applies to: stave
Removes the note or notehead of the given pitch located
at the specified horizontal position on the stave.

setClef(clef(s), position(i))
Applies to: stave
Sets the clef for the given horizontal position on the
stave. If a clef already exits at this point then it is
replaced, otherwise a new clef is added. The current
available clefs are treble, bass, and alto.

setColour(r(i), b(i), g(i), a(i)=255)
Applies to: canvas, layer, scroller, text, glyph, stave, line
Sets the colour of the object. For the canvas and for
layers, this is the background colour. For the scroller, it
is the background colour of the scrolling layer. For text,
glyphs and lines it is the foreground colour of the object.
For staves, it currently only sets the colour of the stave
lines, although this behaviour may change in future. The
colour is specified with red, green, and blue parameters

between 0 and 255, with an optional alpha parameter (set
to full opacity if omitted.)

setEndPoint(x(i), y(i))
Applies to: line
Sets the end point of the line to the given coordinates.

setFont(fontName(s))
Applies to: text
Sets the font to be used by the text object. A full list of
font names on iOS can be found here:
https://github.com/lionhylra/iOS-UIFont-Names.
Additionally “Bravura” can be supplied as the fontName
argument to use the Bravura music font.

setFontSize(fontSize(f))
Applies to: text
Sets the font size of the text object.

setGlyph(glyphType(s))
Applies to: glyph
Sets the music symbol displayed by the glyph. The
argument should be the canonical name of the desired
glyph as defined in the SMuFL specifications. Only a
small subset of these are currently implemented. (Mostly
basic clefs, accidentals, and notes.) If the wanted glyph is
not available an unknown glyph message will be
returned.

setGlyphSize(glyphSize(f))
Applies to: glyph
Sets the size of the glyph. The command will make the
glyph an appropriate size for a stave of the height given
by the glyphSize argument.

setLineWidth(lineWidth(i))
Applies to: stave
Sets the width of the stave lines in pixels.

setOpacity(opacity(f))
Applies to: canvas, layer, scroller, text, glyph, stave, line
Sets the opacity of the object. 0 is entirely transparent, 1
is fully opaque.

setPosition(x(i), y(i))
Applies to: canvas, layer, scroller, text, glyph, stave
Sets the position of the object within the coordinate
space of the parent object.

setScrollerPosition(scrollerPosition(i))
Applies to: scroller
Sets the position of the scrolling layer. This value
specifies which horizontal point on the scrolling layer
should align with the leftmost edge of the viewing
window. When set to 0, the left edge of the scrolling
layer is aligned with the left edge of the viewing window.
Increasing the value offsets it to the left. The maximum
value this can take is the width of the scroller layer: at
this value, the layer is hidden just off to the left of the
viewing window. The minimum value it can take is the

ACMC2018 Proceedings 112 ISSN 2206-5296

negative of the viewing window width: at this value the
scroller layer is hidden just off to the right of the viewing
window.

setScrollerSpeed(scrollerSpeed(f))
Applies to: scroller
Sets the rate at which the scrolling layer moves through
the viewing window, in pixels per second. A positive
value sees the scrolling layer move to the left. A negative
value sees it move to the right.

setScrollerWidth(scrollerWidth(i))
Applies to: scroller
Sets the width of the scrolling layer.

setSize(width(i), height(i))
Applies to: layer, scroller, stave
Sets the size of the object, given by the width and height
arguments.

setStartPoint(x(i), y(i))
Applies to: line
Sets the starting point of the line to the given coordinates.

setText(text(s))
Applies to: text
Sets the string of text to be displayed by the text object.
Unicode characters are permitted.

setWidth(width(i))
Applies to: line
Sets the width of the line in pixels.

start()
Applies to: scroller
Sets the scroller layer in motion.

stop()
Applies to: scroller
Stops the animation of the scroller.

ACMC2018 Proceedings 113 ISSN 2206-5296

