
ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005

Page 7

Keynote Speaker

Ross Bencina
http://www.audiomulch.com/.
rossb@audiomulch.com

 The AudioMulch Process:
Software Development in
Musical Practice

�Software development� is one of the activities I
involve myself with as part of the process of mak-
ing music. I view this process as one of creative in-
terplay between technical possibilities and aesthetic
tendencies. That is to say, the computer, or more
specifically, the software which I develop, is not a
fixed tool with which to realise creative goals, but
rather a malleable medium which evolves alongside
my musical projects. The search for insight into the
interplay between software development and crea-
tive activity within my own practice is current and
ongoing, but one thing seems clear: it is not easy to
combine medium-scale software development with
music making in a unified practice. This talk aims to
tease out some of the nodes of opposition which I
have encountered while developing the AudioM-
ulch interactive music studio software and will, I
hope, hint at some directions towards a more inte-
grated approach to software development in musi-
cal practice.

Computer Art / The Art of Com-

puter Programming / Software Art /

Software Culture?
Artists have been developing software for some
time now (for some examples see Holzman's Digital
Mantras [1]) Some computers scientists have con-
sidered computer programming �Art� for a while
too (note that I don't often draw a strong distinction
between Music and other art forms when it comes
to engaging with computer programming). [2] More
recently, software has become art, in the sense that
programs are written or interpreted as functioning
as art objects, for example Alex McClean's Fork-
bomb, or Adrian Ward's AutoIllustrator. [3] But
more common than any of the aforementioned
categories is the familiar scenario in which software
is used to make music (art) and the artists are con-
sumers of a software �product� developed by �en-
gineers.� This appears to present a relatively clear
point of demarcation between the responsibilities
of, on one hand the creative practitioner and on the
other the software developer (instrument builder,
etc.). This division resonates with the common no-
tion of software applications as tools, or perhaps
�tool-kits,� and sometimes in the musical sense as
instruments, or even scores and orchestras.

I'd like to speak in favor of a different idea: that the
act of developing software can be considered the
act of engaging with a creative medium. By which I

don't mean a medium which (in the �Software Art�
sense) supports the creation of works which exist
only in, and with reference to, software. Nor in the
Knuthian sense of programming as an Art. Rather
I'm referring to a medium which extends in a well
connected fashion from software code and related
development artefacts through to (in the musical
case) a creatively motivated sonic articulation.
When considering a creative practice which in-
cludes software development in this way a few
questions arise:

How does the way in which we learn and practice
software development (or if you like, computer
programming) interact with our creative prac-
tices and outcomes? Can the two processes be
separated? Where and what are the boundaries
formed (if any) between the them?

What are the dominant technical paradigms and
cultural trends influencing computer software
development theory and practice? What relation
do they have to the artistic and creative goals of
�creative software developers�?

On the enevatability of providing a

limited set of possibilities
Setting aside the question of exactly what role we
give to software in relation to the creative process,
it seems that it is relatively unusual to analyse the
ways in which specific software systems (struc-
tures) facilitate (and/or inhibit) specific types of
creative and/or stylistic outcomes. This is especially
true for systems which claim to be stylistically un-
biased. In her study of 1984 IRCAM culture, Geor-
gina Born describes a universalist rhetoric prevalent
at IRCAM in which it was considered possible to
create software which not only avoided being aes-
thetically biased, but was capable of supporting any
and all musical forms. Furthermore, software bi-
ased towards specific aesthetic outcomes was con-
sidered flawed. [4] Recently the creator of the Max
environment expressed a related position that �the
design of Max goes to great lengths to avoid impos-
ing stylistic bias on the musician's output,� [5] but
earlier this year called for a reevaluation of the cul-
tural efficacy of the search for the universalist's
�elusive music representation formalism.� [6]

Some will note that I have in the past expressed an
interest in the elusive music representation formal-
ism myself. [7] I have also developed a software
environment (AudioMulch [8]) which has taken the

pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

http://www.audiomulch.com/.
mailto:rossb@audiomulch.com

ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005

Page 8

pragmatic approach of borrowing musical ideas
and processes from wherever I have seen fit for my
own compositional and performance explorations. I
do not claim to have resolved these two positions,
but my current opinion is that in the limit, a system
is only stylistically neutral if it offers all of the facili-
ties of a general purpose programming language.
Even then, the structures of programming lan-
guages could bias the outcome, to say nothing of
the effects of the programming culture(s) they are
embedded in (see the previous section). At the
other extreme it seems relatively easy to realise ex-
isting musical structures in sound (although not
necessarily automatically) since any coherently or-
ganised body of knowledge has the potential to be
converted to software using a variety of effective
software analysis techniques.

It is between the two poles (1) using general pur-
pose languages and (2) the application of highly
specialised domain-specific software, that we en-
counter a familiar situation: In seeking musical
freedom by employing a general purpose pro-
gramming language we must choose or devise the
abstractions from which �musical� software will be
assembled. The entrenchment of established musi-
cal and software models is great and there are rela-
tively few examples of music software which suc-
ceeds in taking an entirely new direction beginning
with nothing but a general purpose programming
language. More often, common abstractions are
combined or extended in new ways to support de-
grees of freedom not offered by previous systems.
Importantly, irrespective of which models are cho-
sen, their selection will often exclude equally valid
alternatives. It is here that the fallacy of the univer-
salist position becomes clear. One direction forward
was recently offered by Miller Puckette: to clearly
document the models and abstractions so that they
can be reused and understood in relation to each
other. [9]

The Shareware situation, software

in musical practice, software for

other people
My AudioMulch software has been available for
anyone to download from the Internet for over
eight years. The software has been through over
thirty public releases in that time. It's distributed as
�Shareware,� an honour system where people pay
for the software if they think it's worth it. These ar-
rangements have resulted in a complex web be-
tween myself and the user community (of which I
am also a member). For me there are at least three
very positive aspects to this relationship: Firstly, the
fact that thousands of people use my software on a
regular basis means that if a bug arises I hear about
it rather quickly � this leads to better quality soft-
ware than if I had kept AudioMulch as my �private
instrument.� A second aspect of the relationship is

the motivation which users provide me to make
high quality software and to keep making regular
improvements to it. Finally, and most importantly,
are the people who I have met and assisted in their
own musical endeavors through their use of my
software � the richness of these relationships makes
the process much more than just �hacking code.�

With the above in mind I'd like to acknowledge one
of the aspects of the public release approach which
may not reinforce the notion of software develop-
ment as in integral part of a creative practice: that of
the expectation for software quality: there is a large
difference between what long-term users expect
from a live performance instrument, and what a
programmer-composer might be prepared to accept
for a single studio composition or low-risk per-
formance. Maintaining software quality means care-
ful planning and risk management � activities that
are not known for encouraging creativity.

Improvised Performance: Adapting

to Software Development / Musical

Composition similarities
The final area I'd like to touch on is one that I have
also heard expressed by other musicians who have
become involved in software development: that the
development of software takes so much time that
there is none left for making music. A common (but
perhaps incorrect) conclusion is that a person in
such a situation has become a software developer
and is longer a musician. I don't want to dwell on
this point too much here, but I would like to offer
the opinion that this kind of thinking reinforces the
separation (embodied so well by IRCAM practice)
between �technician� and �composer� as if each is
privileged to their sphere alone. In objection to this
position I can do no better than to quote Robert A.
Heinlein: �specialization is for insects.�

One thing I do think is that Software Development
and Musical Composition can, at least in some
cases, be quite similar activities. For example, both
involve structuring large, abstract systems (perhaps
Douglas Hofstadter has something to say about
this). I know that when I'm developing software I
find less internal necessity to compose music, which
isn't to say I find less necessity to make music. This
has lead to a situation where I develop software
and employ it to improvise performances (perhaps
you could say to compose in performance although
I won't go that far). This is quite a distance from the
compositional approaches I was pursuing eight
years ago when I used AudioMulch to produce
sound materials for tape pieces and as a processing
engine for instrumental performers. [10]

(no) conclusions
This is the point in an essay where I habitually sum
up the main points of my argument and try to leave

ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005

Page 9

the reader with a clear sense that some kind of
beautiful unitary objective has been achieved. Crea-
tive practice is, however, a process. These few para-
graphs and the talk which they precede serve
mainly to document current points of
(dis)orientation within my own process and, I be-
lieve, within some creative software development
circles. With luck they will lead to some interesting
discussions over dinner.

Ross Bencina, Barcelona, June 19, 2005.

References
[1] S. R. Holtzman. Digital mantras � the languages
of abstract and virtual worlds. Cambridge, Mass. &
London: MIT Press, 1994.

[2] D. E. Knuth. Computer programming as an art,
Communications of the ACM, 17:12, pages 667�673,
1974.

[3] M. Weiss. What is Computer Art? 2005.
http://www.medienkunstnetz.de/themes/generati
ve-tools/computer_art/

[4] G. Born. Rationalizing culture: IRCAM, Boulez,
and the institutionalisation of the musical avant-
garde. Berkeley: University of California Press,
1995.

[5] M. Puckette. Max at seventeen. Computer Music
Journal 26:4, pages 31�43, 2002.

[6] M. Puckette. The elusive music representation
formalism, S2S2 The Future of Music Software Work-
shop, 2005.
http://www.s2s2.org/index2.php?option=com_con
tent&do_pdf=1&id=71

[7] R. Bencina. The decomposing interface - reflec-
tions on the development of musical software,
Chroma - Newsletter of the Australasian Computer Mu-
sic Association, Issue 28, pages 5�6, June 2000.

[8] R. Bencina. AudioMulch interactive music stu-
dio, 2005. http://www.audiomulch.com/.

[9] M. Puckette. 2005.

[10] R. Bencina. Oasis Rose the composition - real-
time DSP with AudioMulch. In Synaesthetica �98:
Proceedings of the Australasian Computer Music Con-
ference, pages 85�92, 1998.

Biography
Born in Melbourne, Ross Bencina is a composer,
performer and software developer with a strong
interest in improvised electroacoustic music. He has
performed solo and with collaborators around Aus-
tralia and internationally. Recent solo appearances
include The Zoo Nightclub, Manchester, and Met-
ronom gallery, Barcelona. Since 2002 Ross and fel-
low composers Steve Adam and Tim Kreger have
performed together as the Simulus improvising
electroacoustic ensemble. Ross is the creator of
AudioMulch interactive music studio � software for
real-time electronic music performance, which is
distributed as shareware on the internet. He is the
founding developer of PortAudio, an open source
library for real-time audio i/o. Ross graduated from
La Trobe University in 1995 with an honours degree
in arts specialising in electroacoustic music compo-
sition. He is currently a visiting researcher at the
Music Technology Group, Audiovisual Institute,
Universitat Pompeu Fabra, Barcelona, Spain, where
he is working on new musical interfaces and audio
transformation techniques.

http://www.medienkunstnetz.de/themes/generati
http://www.s2s2.org/index2.php?option=com_con
http://www.audiomulch.com/

