
ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005 
 

Page 63 

Angelo Fraietta 
University of Western Sydney 
PO Box 859 
Hamilton NSW, 2303 
Australia 
angelo_f@smartcontroller.com.au 

Porting Max Patches to 
the Smart Controller 
 
 

 
Abstract 

This paper will examine some of the differences and 
similarities between Max and the Smart Controller lan-
guages by examining the composition �Whirling 
Wheels,� originally written by the author for Max in 
1997, which was ported to and performed on the Smart 
Controller. 

Introduction 

Many composers have developed gesture based 
interactive instruments and responsive environ-
ments by mapping input data collected using con-
trol voltage to MIDI converters, which is input to a 
computer running an algorithmic compositional 
program such as Max (Paine 2001,  ; Winkler 1995,  
; Rowe 1993,  ; Winkler 1998). One of the advan-
tages of using Max is that composers are able to 
use graphical or iconic representations instead of 
having to type in text commands, one advantage 
being that a graphical representation may be more 
easily comprehended than with text alone (Favreau 
et al. 1986,  ; Burt 1999,  ; Rowe 2001,  ; Puckette 
1991).  Max has become so popular, that it is used 
in many music departments across the globe, with 
more musicians being able to program in Max than 
in the C++ programming language (Rowe 2001). 

During the years that these composers have 
been using Max, many have built up libraries of 
patches for performing specific functions, enabling 
them to reuse these patches, which in turn, enables 
them to build new patches quickly (Winkler 1998).  
Although the Smart Controller integrates the con-
trol voltage and algorithmic composition into a 
single hardware unit, which can remove the re-
quirement for a personal computer at an installa-
tion or performance, composers might assume this 
advantage may not offset the effort required in 
learning the graphical language of the Smart Con-
troller.  The task of learning how to program the 
Smart Controller can be facilitated by porting exist-
ing compositions already written in Max, for per-
formance in the Smart Controller. 

This paper will examine some of the differ-
ences and similarities between Max and the Smart 
Controller languages by examining the composi-
tion Whirling Wheels, originally written by the au-

thor for Max in 1997, which was ported to and per-
formed on the Smart Controller. 

Whirling Wheels 

Whirling Wheels is a quadraphonic piece where 
three distinct sounds were made to appear as 
though they were moving about the room. The im-
pression of rotating sound was effected by sending 
MIDI notes and pan messages to an FM synthe-
siser, allocating two MIDI channels per voice, and 
assigning each of those two channels to a separate 
group output of the synthesiser. For example, the 
voices in channels 1, 3 and 5 are assigned to group 
output 1, while channels 2, 4 and 6 are assigned to 
group output 2.  The result is two stereo pairs, one 
from each group output.  The left and right of each 
pair are assigned to diagonal quadrants, with 
group output 1 being mapped to front-left and 
back-right speakers; while group output 2 is 
mapped to front-right and back-left as shown in 
Figure 6. 

Group 2 leftGroup 1 Left

Group 1 RightGroup 2 Right

Front

 
Figure 6 MIDI channel to speaker mapping 
 

This is accomplished using MIDI by repeating 
notes in the channel pairs with the same note num-
ber, but with velocity values ninety degrees out of 
phase.  When the velocity of a channel reaches 
zero, the panning on the channel toggles to either 0 
or 127.  To make a sound rotate through each 
speaker in a circle, the repeated sound must 
appear in two speakers, with the intensity in each 
speaker according to position.  Intensity of sound 
is realised by using the velocity of the note.  To 
explain the rotation of sound from front-left full 
circle in a clockwise direction, we will assume that 
MIDI channel 1 left is at the front left speaker, 
MIDI channel 2 left is at front right, MIDI channel 
1 right is at back right, and MIDI channel 2 right is 
at back-right.   

Sound appears at the front-left speaker, there-
fore the panning of MIDI channel 1 must be fully 

pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com

mailto:angelo_f@smartcontroller.com.au


ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005 
 

Page 64 

left with sound generated with a note velocity of 
127; MIDI channel 2 is panned fully left with sound 
produced with a noted velocity of 0.  As sound 
approached the front- right speaker, the velocity of 
notes generated on MIDI channel 1 decrease, re-
ducing sound from front-left speaker; while the 
velocity of the notes on MIDI channel 2 increase, 
increasing its intensity of sound in the front right 
speaker.   

When the sound is at the front-right speaker, 
notes from MIDI channel 2 have a velocity of 127, 
while notes from MIDI channel 1 have a velocity of 
zero.  MIDI channel 1 has its pan changed to fully 
right, thus assigning sound output to the back-
right speaker; its velocity, however, is zero, which 
means that the pan change is not audible at that 
instant. 

As sound moves from the front-right speaker 
to the back-right speaker, the velocity of the notes 
on MIDI channel 2 decrease, while the note veloc-
ity increases in MIDI channel 1.  When the note 
velocity in MIDI channel 1 reaches 127 and the 
note velocity in MIDI channel 2 reaches 0, the 
sound is fully at the back-left speaker.  MIDI chan-
nel 2 changes pan to fully right, and thus assigning 
its sound to the back-left speaker. 

Sound approaches the back left speaker as 
notes on MIDI channel 2 increase in velocity, while 
those on MIDI channel 1 decrease in velocity.  
When the note velocity on MIDI channel 1 becomes 
0 and that on MIDI channel 2 becomes 127, the 
sound is fully in the back-left speaker. MIDI chan-
nel 1 changes pan to fully left, thus assigning its 
sound to the front left speaker. 

When note velocities on MIDI channel 1 reach 
127, note velocities on MIDI channel 2 are 0, MIDI 
channel 2 is then panned fully left.  This has been a 
full revolution.   

MIDI channel pairs 3&4 and 5&6 work exactly 
the same, with odd MIDI channels numbers being 
assigned to group 1, while the even MIDI channels 
are assigned to group 2. In addition to turning a 
voice on or off, the performer is able to modify the 
volume, speed of rotation, and pitch of each voice.  
This piece was originally realised in Max, with per-
formance control performed using sliders, toggles, 
and message boxes as the performance controls 

Max Patch Algorithm 

The Max patch was developed as three distinct 
patcher objects, one for each pair of MIDI channels, 
each with controls connected to the inlets. A single 
channel pair is shown in figure 7. The voice rotation 
is started by setting the toggle labelled �rotate,� 
which sends a one value into the fifth inlet of the 
patcher.  The speed of rotation is adjusted by the 
slider marked �metro speed,� which is input to the 
sixth inlet of the patcher through a number box.  

The volume of the voice is controlled by the slider 
marked �vol,� which is input to the seventh inlet of 
the patcher. 

The vertical slider on the left sets the pitch of 
the note, and is input to the first inlet of patcher 
layer 1.  

 
Figure 7 Top Level Max Patch 
 

It is also possible to have the pitch change 
automatically by setting the toggle, going into the 
second inlet of the patcher, which starts a counter. 
The rate of this change is controlled by the slider, 
which goes into the third inlet of the patcher 
(through a scaling patch �invertmidi.p�), while the 
direction of the pitch change counter is determined 
by the message boxes going into fourth inlet.   

Smart Controller Translation 

Within the Smart Controller, it was not necessary 
to have slider controls and toggles for each channel 
because control was effected through AnalogIn and 
DigitalIn objects, which received the control volt-
ages from the external instrument. Also each voice 
channel was encapsulated into separate patch files, 
which are equivalent to Max patch objects. Within 
the Max patch, initialisation was performed by the 
user pressing a �bang� object. Within the Smart 
Controller, initialisation is performed when the 
first digital input message received, causing the 
FlipFlop to generate an output, causing the trigger 
to generate a tick3 message, causing the three 
MessageStore objects to send an initialisation 
number into the associated patch inlets, shown in 
figure 8. If the DigitalIn object sends another 
message, the FlipFlop will not produce an output 
because it is already in its set state; similar to using 
a �onebang� object in Max. 

                                                        
3 A tick message is identical to the Max 

bang message. 



ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005 
 

Page 65 

 
Figure 8 Smart Controller patch initialisation 
 

The included patch file, shown in figure 9 as 
two separate performance views, contains an ini-
tialisation algorithm in addition to the connection 
of analogue and digital inputs to another sub 
patch. The initialisation algorithm, shown in the 
performance view on the bottom of figure 9, 
mapped the associated digital and analogue inputs 
to the number input to its inlet by using Calculate 
objects to set the input digital and analogue chan-
nels.  The performance view on the top of figure 9 
shows the mapped analogue and digital inputs as 
inputs to another patch-file that is functionally 
similar to the �patcher layer 1� in the Max patch 
originally shown in figure 7. 

 

 
Figure 9 Mapping digital and analogue inputs inside each 

sub patch 
 
Within the Max version of the piece, the ninety 

degree phase difference between each channel pair 
was effected through the use of a 0 to 127 counter 
and a table that generated numbers ninety degrees 
out of phase to the index, as shown in figure 10.  

 
Figure 10 Using table to create phase difference 

 
Within the Smart Controller, the phase differ-

ence was achieved through the use of two up-
down counters set to count ninety degrees out of 
phase by setting the reset count of the leading 
counter to start at 63, while the lagging counter 
starts at 0. These two counters are shown as the 
circled objects within two different performance 
views in figure 11. 

 

 
Figure 11 Counters ninety degrees out of phase 
 

The output of these two counters has two func-
tions, shown in the different performance views in 
figure 11. In the bottom performance view, the 
count output is used as the data 2 input to a 
MidiOut object configured to generate a note on 
message. This results in notes being generated with 
velocities ranging from 0 to 127.  

In the top performance view, the underflow 
outlet of the counter is sent to a sub-patch to toggle 
the panning on the channel. Each time a counter 
reaches 0, the sub patch toggles from 0 to 127, 
which is sent to the data2 inlet of a MidiIn object 
configured to generate a MIDI controller 10 (pan) 
message, causing the MIDI channel to be hard left 
or right. 

 



ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005 
 

Page 66 

 Object Placement 

Within Max, the positioning of an object on the 
screen affects the algorithm because objects on the 
right are called before objects on the left. In Max, 
this was overcome by using delay objects with a 
value of 1 in order to make an object on the left 
receive a message before an object on the right.  
This was not necessary within the Smart Controller 
because it is possible to set and change the order at 
which connections will be executed from an outlet.  
Additionally, repositioning of PatchInletPorts or 
Patch OutletPorts�equivalent to moving inlets 
and outlets in a patcher in Max�does not effect 
the outlet number. For example, repositioning of 
the two circled PatchInletPorts shown at the bot-
tom of figure 12 to different positions on the display 
would have no effect on its interface to the higher 
level patch connected to those inlets, shown in the 
top of figure 12. 

 
Figure 12 Inlet position in patches  

Object Differences 

Many of the object types using in the Smart Con-
troller can be mapped as direct replacements of 
Max types. In many cases, however, Smart Con-
troller objects have configuration options, which in 
turn reduces the number of different object types 
required. For example, where one might use a 
�ctlin 12 1� object in Max to receive controller in-
formation data for MIDI controller 12 on MIDI 
channel 1; Smart Controller would use a MidiIn 
object configured to filter MIDI controller 12 mes-
sages on channel 1, as shown in figure 13. 

 

 
Figure 13 Configuring MidiIn object 
 

Table  1 provides a conversion list, loosely 
mapping Smart Controller object types to Max ob-
ject types. 

 
Smart Controller 
Type 

Similar 
Max Types 

Comments on 
differences 

Analogue In Nil  
Analogue Out Nil  
Calculate Arithmetic 

objects 
The operator is 
defined as an 
attribute and 
can also be 
changed 
through an 
inlet. Can also 
be made to 
perform calcu-
lation through 
the right inlet. 

Counter Counter The counter 
can have differ-
ing initial di-
rection, count 
step size, and 
initial count. 

Delay Delay  
Digital In Nil  
Digital Out Nil  
Display print  
Flip-flop Combina-

tion of one-
bang and 
toggle 

Generated out-
put is 1 for 
non-zero input 
to left inlet and 
0 for non-zero 
input to right 
inlet. 
Right inlet may 
also cause out-
put generation.  

Inlets Switch Switch  



ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005 
 

Page 67 

Smart Controller 
Type 

Similar 
Max Types 

Comments on 
differences 

Message Store Message box  
Metro Metro  
Midi In Combina-

tion of MIDI 
input object 
types 

MIDI message 
types can be 
filtered so as to 
only allow cer-
tain messages 
that meet crite-
ria to generate 
output. 

Midi Out Combina-
tion of MIDI 
output object 
types 

Can also be 
configured to 
turn off a pre-
vious note if 
generated by 
this object 

Number Store Number Box  
OSC In Third party 

external 
 

OSC Out Third party 
external 

 

Outlets Switch Gate  
Patch Patcher  
Patch From File Patch A patch from 

file can be con-
verted to an 
internal patch 
and vice versa 

Patch Inlet Port Inlet Changing the 
position on the 
display does 
not effect the 
inlet number 

Patch Outlet Port Outlet Changing the 
position on the 
display does 
not effect the 
outlet number 

Random Gen. Random  
Selector Select  
Sequencer Seq The MIDI 

bytes and meta 
data are sent to 
different out-
lets. Playback 
speed can be 
changed while 
sequence is 
playing 

Table Table  
Toggle Toggle  
Trigger Bang  
Table  1 Smart Controller to Max conversion 

 

Conclusion 

Learning to program the Smart Controller can be 
expedited by porting compositions originally writ-
ten for Max. Spoken languages are often taught by 
porting standard dialogue from a known language 
into the language being learnt. The same can be 
accomplished in music programming by porting 
algorithms from a known language to a new one. 
This, in turn, reduces the load placed upon the 
composer in that they would not be required to 
input as much creative energy into learning the 
new language; instead, the process could be seen 
as arranging an existing work for a new instru-
ment. 
  

References 

Burt, Warren. 1999. "An Email Interview with 
Warren Burt." Interview by G. Schiemer. 
Chroma: Newsletter of the Australasian Com-
puter Music Association 25:2-6. 
<http://www.acma.asn.au/Chroma25.pdf>. 

Favreau, Emmanuel, Michel Fingerhut, Olivier 
Koechlin, Patrick Potacsek, Miller Puckette, 
and Robert Rowe. 1986. Software develop-
ments for the 4X real-time system. In proceed-
ings of the International Computer Music Con-
ference. Royal Conservatory of Music, Den 
Haag, Netherlands. 

Paine, Garth. 2001. Interactive sound works in 
public exhibition spaces: an artists perspective. 
In proceedings of Waveform 2001: the Aus-
tralasian Computer Music Conference. Uni-
versity of Western Sydney. 

Puckette, Miller. 1991. "FTS: a real-time monitor 
for multiprocessor music synthesis." Computer 
Music Journal 15 (3):58-67. 

Rowe, Robert. 1993. Interactive music systems : 
machine listening and composing. Cambridge, 
Mass.: MIT Press. 

���. 2001. Machine musicianship. Cambridge, 
Mass. ; London: MIT Press. 

Winkler, Todd. 1995. Making motion musical: Ges-
ture mapping strategies for interactive com-
puter music. In proceedings of International 
Computer Music Conference. Banff, AB, Can-
ada. 

���. 1998. Composing interactive music: tech-
niques and ideas using Max. Cambridge, 
Mass.: MIT Press. 

 


