
ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005

Page 96

Peter Mcilwain
Centre for Electronic Media Art,
School of Music,
Monash University
VIC 3800
Australia
Peter.Mcilwain@arts.monash.edu.au

Jon McCormack
Centre for Electronic Media Art,
School of Computer Science and Soft-
ware Engineering
Monash University
VIC 3800
Australia
Jon.McCormack@infotech.monash.edu.au

Design Issues in
Musical Composition
Networks

Abstract
Alternative approaches are explored and dis-
cussed relating to the design and function of
the software project "Nodal". This project
aims to create a graphical environment that
enables the user to configure a spatial, di-
rected graph that generates music in real-
time. We refer to such graphs as composition
or nodal networks. These networks provide a
programming and visualization structure
that emphasizes temporal relations and event
topology � the primary reasons for using
networks to represent musical processes. The
discussion in this paper relates to the initial
design constraints that have been imposed on
the project and alternatives within these con-
straints that give rise to different musical
behaviors. Assessments are made about the
effectiveness of different design approaches.

Introduction

Computers and algorithmic processes bring new
possibilities for both compositional notation and
the process of music generation. This paper de-
scribes some in-progress exploration of how we
can design dynamic, graphic notation systems
suitable for composing and specifying generative
algorithmic processes for music composition.
Conventional representation systems are ill
suited to effectively notating the musical output
of non-linear generative processes. Moreover,
they are inadequate for programming specifica-
tion of such processes. The scheme examined in

this paper represents an on-going investigation
into how visual programming and notation sys-
tems can be designed for generative musical
composition.

Nodal networks are a new musical representa-
tion and generation system we have developed
for computer-assisted music composition and
generation. Dynamic musical systems are repre-
sented as discrete and continuous events spa-
tially organised as a directed graph. The graph
(termed a nodal network) is built interactively
by the user of the system, with nodes (vertices)
representing discrete events such as playing a
note, and directed arcs (edges) representing con-
tinuous events such as dynamic expression.
Networks are traversed in real-time by any
number of software players who interpret the
graph layout and translate it into music.

There are a number of similarities in this ap-
proach to previous generative musical specifica-
tion systems, such as generative grammars, fi-
nite state automata, Petri nets and Predicate
Networks (Chemillier 1992; Lyon 1995; McCor-
mack 1996; Pope 1986). The nodal network dif-
fers principally in the mapping of geometric
space to represent timing information. The arc
distance between connected nodes corresponds
to the time between discrete events � i.e. the
longer the arc the greater the time taken for the
player to travel between connected nodes. By
quantising arc distances to standard musical me-
tres, arc lengths can represent the note durations
found in conventional musical notation. How-
ever, this restriction can easily be relaxed, lead-
ing to more unconventional temporal relation-
ships.

While it is common for networks to be used
in real-time composition, a precursor to the
work described here is the Snet program (Mcil-
wain & Pietsch 1996), which utilized a real-time

pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005

Page 97

neural network simulation. In this system, a key
aspect is the evolution connections by emulating
the action potential of a neuron.

Graph based notation and programming sys-
tems offer a number of advantages over other
methods. Musical temporal structure and phras-
ing is given a two- or three-dimensional geomet-
ric analogue, highlighting structural and timing
information that is difficult to discern in other
representations. For example, linear time repre-
sentation schemes, such as the �piano-roll� sys-
tem currently used in most commercial music
composition software cannot obviously repre-
sent cyclic, hierarchical, or feedback structures
in a composition. State machines, graph gram-
mars and Petri nets are more suited to this prob-
lem, but while they may show compositional
structure and flow, this is usually abstract and is
done at the expense of timing information (Pope
1986).

Dynamic graphs are capable of generating
complex, emergent properties, even through
relatively simple feedback mechanisms and
structures. The use of real time structural change
and interaction with the compositional structure
gives the composer the ability to interactively
work in tandem with the generative complexity
of computational networks, potentially leading
to new creative possibilities in composition.

The implementation of composition net-
works has been realised in the software project
Nodal, which permits real time construction, ed-
iting and traversal of networks. The remainder
of this paper relates to how the design process of
the software influenced the development and
analysis of how composition networks can be
implemented as a practical tool for the musician.

Initial Concept and Design Con-

straints

The initial concept behind Nodal was to create a
method of generating music via a network in
which the output of a node is a musical note (de-
fined by MIDI note parameters). Time between
note events is determined, and represented, in a
graphical form by the length of arcs between the
nodes. The design brief was that the software
should generate music in real-time so that it
could function as a module or plug-in with other
software such as MIDI sequencers and programs
such as Max/MSP.

Given that the number of possible configura-
tions and functions that a composition network
can have, software of this kind can potentially be
too complex for a user to configure in a mean-
ingful way. For this reason the over-riding de-
sign constraint was that the software be as sim-
ple and as intuitive to use as possible. Therefore
a significant proportion of the software devel-

opment process was given over to addressing
user interface issues. This design constraint also
determined that the software would present of a
limited set of possibilities while still providing a
flexible and multifaceted network environment.
This raises the question of how to select design
features that fall within the design constraint.
Part of the process that was adopted was to look
at how an existing piece of music might be cre-
ated and represented as a real-time nodal net-
work. This should then provide clues as to what
features and designs may be the most useful.

The nursery rhyme Three Blind Mice was se-
lected for its apparent simplicity. This selection
was made with the rationale that if a nodal net-
work was not able to generate a �simple� mel-
ody then it would be hardly likely to generated
anything more sophisticated.

Nodal Representations of a Melody

start node

Figure 5. A nodal network with a linear structure.

One way to represent a melody in a nodal net-
work is to represent every note event by a singu-
lar node. In this kind of network, connections
only need to be unidirectional (the first node
connects to the second etc.). This results in a lin-
ear network that plays the melody once (shown
in Figure 1). Clearly, this configuration is not a
particularly useful or sophisticated use of a
graph (in fact it is a list) because it fails to utilise
the more complex structural properties that are
a key feature of graphs in general. Such features
enable the user to work with representations of
underlying iterative, hierarchical and feedback
structures that afford the possibility of creating
variants from a finite set of elements. Further-
more it is time consuming and cumbersome to
create melodies in this fashion.

Given that many melodies are repeated, the
network described above could be configured in
a loop so that the last node is connected to the
first. The network would then play continuous
repeats of the melody. Large-scale repetition of
this kind is the lowest level of structure that can
be represented in a network.

Another way to produce a continuous loop
is to make all of the connections in a linear lay-
out, bidirectional (i.e. the first node is connected
with the second, which is also connected to the
first, and so on). This will produce a variant of
the melody that alternates between the original
form and a kind of retrograde. Here the retro-
grade version is a literal rhythmic retrograde
and a displaced pitch retrograde (see Figure 2).

ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005

Page 98

(p: E) (p: D) (p: C) terminal node

Figure 6. 2 way connections in a linear network.

Nested Looping Structures
Melodies such as Three Blind Mice include motifs
that are repeated. This is particularly true of
rhythmic motifs (a full transcription with a mo-
tivic analysis is shown in Figure 3). Therefore,
the next level of structure that can be repre-
sented is a series of nested network loops.

Figure 7. Transcription of Three Blind Mice with motivic

analysis.

Figure 4 illustrates a network that generates
a simplified version of Three Blind Mice. It con-
sists of three interconnected looped structures
(sub-networks) that are part of a larger looped
structure. In order for the sub-networks to be
connected it is necessary for each sub-network to
have one node with multiple outputs. In Figure
4, nodes that have multiple outputs are: A-3, B-4
and C-8.

A B

CA

A-1 A-2

A-3

B-1 B-2

B-4

B-3

B-5

C-1 C-3

C-6

C-5

C-2

C-4

C-7

C-9

C-8C-9

A-3 A-2

A-1

(A-3 to B-1)
(B-4 to B-5)

(A-3 to A-1)

(A-3 to A-1)

(B-4 to
 B-1)

Figure 8. A nested looping structure.

Whenever a node has multiple output con-

nections some sort of rule must be employed to
determine which of the connections will be acti-
vated1. The rule that is relevant in the example
in Figure 4 is that the two outputs are selected
alternatively. For example, on the first firing of
B-4 the connection will be B-4 to B-1 and on the
second firing the connection will be B-4 to B-52.
In the melody, motif C is heard three times. To
make this possible in the network an extension
to the connection rule must be applied. This is
done by creating a connection list that is applied
sequentially. So for node C-8 the connection list
will be:

1. C-8 to C-9
2. C-8 to C-9
3. C-8 to C-10

Multi-layered Structures
While the example in the previous section does
contain some iteration the network does not dis-
play any sophisticated behavior as a result. That
is, the structure of the network does not repre-
sent the evolution of the elements of motif A.
Instead the three motifs must be created sepa-
rately and as a result, any short-term elaboration
of the melody cannot be represented. This is the
case with motif C, where there are in fact three
variants of the motif but only one is represented
in the network shown in Figure 4.

A more sophisticated way of representing
Three Blind Mice is to create a multi-layered net-
work that adds information to a network rather
than replacing it with a new sub-network. Es-
sentially, this preserves the topology of the
original network, but makes the spatial layout
and relationships easier for the composer to un-
derstand in terms of melodic structure and pro-
gression. In order to do this it is necessary to
find any elements of the melody that are re-
tained from one motif to the next.

The rhythmic structure of Three Blind Mice
does contain repeated elements that are elabo-
rated as the melody progresses. As shown in
Figure 5 below, the rhythmic motif in A contin-
ues through all 8 measures of the melody. Addi-
tional time points are added with successive mo-
tifs and are retained until the end of measure 7
after which there is a recapitulation of the open-
ing motif. The exceptions to this are the time
points added in measures 6 and 7. These addi-
tions only occur for one measure each and can
be seen as elaborations that are necessary for
text setting purposes. The analysis shows a dis-
tinct evolving pattern stemming from the initial
rhythmic motif.

1 In this discussion we assume only one input per node.
2 This rule is also applied in the example in Figure 2 where the second and third nodes in the network both

have two outputs.

ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005

Page 99

In rhythmic terms, the melody can be repre-
sented as a series of networks that run simulta-
neously (although starting and ending at differ-
ent times). While rhythmic structures are re-
tained, pitch material associated with particular
time points change. In order to deal with this, a
list of pitches for each node can be used. Here
the list is read sequentially, the position in the
list being advanced each time the associated
node fires. The subnets discussed above and
their related pitch lists are shown in Figure 6.

sn 1

3

5

7

2

4

6

8

1 3 5 7 9 112 4 6 8 10 12

A

B

C

A

rhythmic divisions

sn 2

sn 3

sn 4

sn 5

sn 6

1

Figure 9. Overlaid rhythmic structures in Three Blind

Mice. Black dots represent the addition of a new
time point. Subnets derived from the analysis are
enclosed in grey boxes and are annotated �sn�.

As the subnets start and stop at different
times some method must be used for determin-
ing when a node is to be active. A simple con-
vention for turning subnets on is to have an acti-
vation threshold. Here a node only becomes active
after a certain number of messages have been
passed to it. An easy way to include this is to
include a non-active state in the pitch list. For
example the pitch list for subnet 2 would be:

n1: Nx2, F3x2, B3x3, N
Here N = non-active state.

Another way to conceive of the subnet layer
approach is to think of the layers as part of a
three dimensional space. Here arcs between
nodes in different layers could be used to acti-
vate the successive layers. This requires a
spawning process that creates multiple activa-
tions within the network. For this to occur a spe-
cial connection rule must be used where two or
more connections from one node can be acti-
vated simultaneously. With multiple activations
it is therefore possible to create polyphonic mu-
sical textures and, given the right configuration,
complex feedback interactions between sub-
networks.

The pitch list technique discussed previously
represents an extension to the concept of the
pitch series. The classical pitch series consists of
an array of pitches that are applied to time
points in a serial fashion. The technique de-

scribed above has unique arrays for each time
point. This has interesting, and potentially, very
useful possibilities for the representation of ver-
tical pitch structures in horizontal environments
such as a nodal network (although a nodal net-
work is not needed to implement this tech-
nique). For example the pitch lists shown in Fig-
ure 6 show chords that are voiced across time,
an example of which is the pitch list for 1.1 (sub-
net 1, node 1). This pitch list constitutes the C
Maj chord. Other examples include 1.2 - Dom7th
and 3.1 Dom7th. The pitch list technique enables
the exploration of horizontal harmonic struc-
tures. For example, if the chords in the pitch lists
for Three Blind Mice where changed to those
from a different mode, then the melody would
be transformed with a new harmonic structure.

1

Pitch Lists
n1: F3x2, B3x3

Start after 2 cycles of Sn1

Figure 6. Subnets and related pitch lists for Three Blind

Mice.

In the rhythmic domain, the multilayered
approach enables subtle yet complex evolution
of rhythmic structures and has advantages over
a two-dimensional structure in that the rhythmic
structures can be maintained across time. Like
the potential for harmonic transformation via
pitch lists, base level transformation of the
rhythmic structure is relatively easy to perform.
As the layer approach enables the representation

ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005

Page 100

of different hierarchies of structure, transforma-
tion can in fact occur an all of these levels.

This would suggest that it is desirable to cre-
ate a three-dimensional environment within
which to work. There may however, be a trade-
off between the flexibility that a three-
dimensional environment offers against the
complexity of working within it.

Emergent Music

So far we have discussed nodal networks from
the perspective of taking an existing piece of
music and representing it in a nodal network
structure. This approach is useful in that it
brings to light structures that may be musically
useful. It can be argued however that this is not
the best approach to take because real-time
nodal networks may generate music that does
not necessarily conform to the kind of structures
found in music such as the Three Blind Mice ex-
ample. They may however be of interest for
other reasons.

One obvious approach is to use networks in
an experimental fashion. Here the network is
configured without a fixed goal in mind. Instead
the focus is on emergent properties of a particu-
lar network structure. It can be argued that this
approach makes the best use of the structural
properties of networks. The nature of real time
interaction also facilitates easy experimentation
and play with a complex system.

It is possible for example, to configure net-
works that can create musical textures that
would be very difficult to calculate manually.
Furthermore they can create textures with ongo-
ing change based on a defined set of elements.
The network shown in Figure 7 generates a mel-
ody that contains many motivic fragments but
does not repeat for a least 80 measures. This
network has a simple two-dimensional design,
comprising nine nodes, each of which outputs a
fixed pitch. Connection between the nodes are
however relatively complex; there is an inner
core of four nodes that are all interconnected
and an outer layer of five nodes that are more
sparsely connected. This design focuses activity
on the inner core allowing for variation coming
from the outer layer.

The connect rule is also simple, for every in-
put the output connection is selected sequen-
tially (where there is two or more outputs).
While there is motivic diversity in the melody
the main variation is through recombination
from available pitches and durations. Therefore
long term changes in register, harmonic and
rhythmic structures are not present.

A more sophisticated design would allow
the interaction between the nodes to influence
parameters such as pitch and duration. This can
be achieved via the use of relative parameters in

the nodes. For example a node can be designed
that has a pitch increment which outputs a pitch
value either higher or lower than the value in the
node that caused it to fire. This approach can be
taken for all parameters that define a note. Rela-
tive values can therefore create change over time
and also allow for true emergent behavior to
evolve.

a.

D3

C4

C3Eb3

Gb3

C2

G3

A3

Eb2

b.

Figure 7. a) Long melody network diagram, b) transcrip-
tion of the output.

The Nodal Software

The Nodal software system, currently in devel-
opment, implements many of the design features
discussed in this paper. Figure 8 shows a screen
shot of the software in operation. Networks are
created in real time and displayed in the main
window. Multiple networks and players are
possible, with each player starting from a possi-
bly different node. Each node is assigned a set of
attributes that specify player state changes car-

ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005

Page 101

ried by that node (these are a generalisation of
the parameters discussed in previous sections).
In general, attributes are either setting or modify-
ing. Setting attributes set a property at an abso-
lute value. Modifying attributes modify the cur-
rent value carried by the player. Common at-
tributes include pitch, duration, volume, and
note-on velocity. The system is extensible so cus-
tom attributes can easily be added to the system.

Attributes can be edited on a per-selected-
node basis in specific attribute editors (right
window). These editors can also be set from a
MIDI input device. The software design also
permits arcs to modify continuous information
such as volume or expression. Attribute editors
for arcs are currently under development.

Figure 10. Screen shot of Nodal in operation.

Outgoing arc order and sequencing can also
be set in the right window. A novel colour coded
arc manipulation system allows the user to
change arc sequencing intuitively, accommodat-
ing arc insertion and deletion with minimal
modification of existing ordering. This system
allows the user to set output arc order and enu-
meration for a given node. Further controls al-
low switching between random and sequential
ordering where individual arc repeat counts be-
come probability weights.

Conclusions

The design of Nodal is still evolving. In this pa-
per we have looked at how a number of design
issues and constraints can be developed using
analysis of seemingly simple musical structures.
Developing software with complex or unconven-
tional user-interfaces can be a time and resource
intensive task, so any design and operability is-
sues that can be established before the software
is built will be beneficial. However, in many in-
stances these issues can only be determined by
actually building and using the software, since
no analogue exists in conventional systems. In-
tuition and heuristics play a strong role here.

Nodal networks appear to offer interesting
new possibilities for the composer. It remains an

on-going investigation as to how we can best use
and design them in software to realize their full
potential.

Acknowledgements

The project team for Nodal consisted of the au-
thors, Alan Dorin and Aidan Lane. Aidan also
wrote the current version of the software. This
research was supported by an Arts/IT grant
from Monash University.

References

Chemillier, M. 1992, Automata and Music, in
Strange, A. (ed) Proceedings of the 1992
International Computer Music Conference,
ICMA, San Francisco. pp. 370-371.

Lyon, D. 1995, 'Using Stochastic Petri Nets for
Real-Time Nth-Order Stochastic Compo-
sition', Computer Music Journal, 19(4), pp.
13-22.

McCormack, J. 1996, 'Grammar-Based Music
Composition', in Stocker, R., H. Jelinek,
B. Durnota & T. Bossomaier (eds), Com-
plex Systems 96: From Local Interactions to
Global Phenomena, ISO Press, Amster-
dam. pp. 321-336.

McIlwain, P.A., A. Pietsch (1996) 'Spatio-
temporal Patterning in Computer Gen-
erated Music: A Nodal Network Ap-
proach', in Proceedings of the International
Computer Music Association Conference
1996, ICMA, San Francisco. pp. 312-15.

Pope, S. 1986, 'Music Notations and the Repre-
sentation of Musical Structure and
Knowledge', Perspectives of New Music,
24(2), pp. 156-189.

