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Abstract 
Alternative approaches are explored and dis-
cussed relating to the design and function of 
the software project "Nodal". This project 
aims to create a graphical environment that 
enables the user to configure a spatial, di-
rected graph that generates music in real-
time. We refer to such graphs as composition 
or nodal networks. These networks provide a 
programming and visualization structure 
that emphasizes temporal relations and event 
topology � the primary reasons for using 
networks to represent musical processes. The 
discussion in this paper relates to the initial 
design constraints that have been imposed on 
the project and alternatives within these con-
straints that give rise to different musical 
behaviors. Assessments are made about the 
effectiveness of different design approaches. 

Introduction 

Computers and algorithmic processes bring new 
possibilities for both compositional notation and 
the process of music generation. This paper de-
scribes some in-progress exploration of how we 
can design dynamic, graphic notation systems 
suitable for composing and specifying generative 
algorithmic processes for music composition. 
Conventional representation systems are ill 
suited to effectively notating the musical output 
of non-linear generative processes. Moreover, 
they are inadequate for programming specifica-
tion of such processes. The scheme examined in 

this paper represents an on-going investigation 
into how visual programming and notation sys-
tems can be designed for generative musical 
composition. 

Nodal networks are a new musical representa-
tion and generation system we have developed 
for computer-assisted music composition and 
generation. Dynamic musical systems are repre-
sented as discrete and continuous events spa-
tially organised as a directed graph. The graph 
(termed a nodal network) is built interactively 
by the user of the system, with nodes (vertices) 
representing discrete events such as playing a 
note, and directed arcs (edges) representing con-
tinuous events such as dynamic expression. 
Networks are traversed in real-time by any 
number of software players who interpret the 
graph layout and translate it into music.  

There are a number of similarities in this ap-
proach to previous generative musical specifica-
tion systems, such as generative grammars, fi-
nite state automata, Petri nets and Predicate 
Networks (Chemillier 1992; Lyon 1995; McCor-
mack 1996; Pope 1986). The nodal network dif-
fers principally in the mapping of geometric 
space to represent timing information. The arc 
distance between connected nodes corresponds 
to the time between discrete events � i.e. the 
longer the arc the greater the time taken for the 
player to travel between connected nodes. By 
quantising arc distances to standard musical me-
tres, arc lengths can represent the note durations 
found in conventional musical notation. How-
ever, this restriction can easily be relaxed, lead-
ing to more unconventional temporal relation-
ships. 

While it is common for networks to be used 
in real-time composition, a precursor to the 
work described here is the Snet program (Mcil-
wain & Pietsch 1996), which utilized a real-time 
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neural network simulation. In this system, a key 
aspect is the evolution connections by emulating 
the action potential of a neuron. 

Graph based notation and programming sys-
tems offer a number of advantages over other 
methods. Musical temporal structure and phras-
ing is given a two- or three-dimensional geomet-
ric analogue, highlighting structural and timing 
information that is difficult to discern in other 
representations. For example, linear time repre-
sentation schemes, such as the �piano-roll� sys-
tem currently used in most commercial music 
composition software cannot obviously repre-
sent cyclic, hierarchical, or feedback structures 
in a composition. State machines, graph gram-
mars and Petri nets are more suited to this prob-
lem, but while they may show compositional 
structure and flow, this is usually abstract and is 
done at the expense of timing information (Pope 
1986). 

Dynamic graphs are capable of generating 
complex, emergent properties, even through 
relatively simple feedback mechanisms and 
structures. The use of real time structural change 
and interaction with the compositional structure 
gives the composer the ability to interactively 
work in tandem with the generative complexity 
of computational networks, potentially leading 
to new creative possibilities in composition. 

The implementation of composition net-
works has been realised in the software project 
Nodal, which permits real time construction, ed-
iting and traversal of networks. The remainder 
of this paper relates to how the design process of 
the software influenced the development and 
analysis of how composition networks can be 
implemented as a practical tool for the musician. 

Initial Concept and Design Con-

straints 

The initial concept behind Nodal was to create a 
method of generating music via a network in 
which the output of a node is a musical note (de-
fined by MIDI note parameters). Time between 
note events is determined, and represented, in a 
graphical form by the length of arcs between the 
nodes. The design brief was that the software 
should generate music in real-time so that it 
could function as a module or plug-in with other 
software such as MIDI sequencers and programs 
such as Max/MSP.  

Given that the number of possible configura-
tions and functions that a composition network 
can have, software of this kind can potentially be 
too complex for a user to configure in a mean-
ingful way. For this reason the over-riding de-
sign constraint was that the software be as sim-
ple and as intuitive to use as possible. Therefore 
a significant proportion of the software devel-

opment process was given over to addressing 
user interface issues. This design constraint also 
determined that the software would present of a 
limited set of possibilities while still providing a 
flexible and multifaceted network environment. 
This raises the question of how to select design 
features that fall within the design constraint. 
Part of the process that was adopted was to look 
at how an existing piece of music might be cre-
ated and represented as a real-time nodal net-
work. This should then provide clues as to what 
features and designs may be the most useful.  

The nursery rhyme Three Blind Mice was se-
lected for its apparent simplicity. This selection 
was made with the rationale that if a nodal net-
work was not able to generate a �simple� mel-
ody then it would be hardly likely to generated 
anything more sophisticated. 

Nodal Representations of a Melody 

start node

 
Figure 5. A nodal network with a linear structure. 

One way to represent a melody in a nodal net-
work is to represent every note event by a singu-
lar node. In this kind of network, connections 
only need to be unidirectional (the first node 
connects to the second etc.). This results in a lin-
ear network that plays the melody once (shown 
in Figure 1). Clearly, this configuration is not a 
particularly useful or sophisticated use of a 
graph (in fact it is a list) because it fails to utilise 
the more complex structural properties that are 
a key feature of graphs in general. Such features 
enable the user to work with representations of 
underlying iterative, hierarchical and feedback 
structures that afford the possibility of creating 
variants from a finite set of elements. Further-
more it is time consuming and cumbersome to 
create melodies in this fashion. 

Given that many melodies are repeated, the 
network described above could be configured in 
a loop so that the last node is connected to the 
first. The network would then play continuous 
repeats of the melody. Large-scale repetition of 
this kind is the lowest level of structure that can 
be represented in a network.  

Another way to produce a continuous loop 
is to make all of the connections in a linear lay-
out, bidirectional (i.e. the first node is connected 
with the second, which is also connected to the 
first, and so on). This will produce a variant of 
the melody that alternates between the original 
form and a kind of retrograde. Here the retro-
grade version is a literal rhythmic retrograde 
and a displaced pitch retrograde (see Figure 2). 
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(p: E) (p: D) (p: C) terminal node

 
Figure 6. 2 way connections in a linear network. 

 
Nested Looping Structures 
Melodies such as Three Blind Mice include motifs 
that are repeated. This is particularly true of 
rhythmic motifs (a full transcription with a mo-
tivic analysis is shown in Figure 3). Therefore, 
the next level of structure that can be repre-
sented is a series of nested network loops. 

 
Figure 7. Transcription of Three Blind Mice with motivic 

analysis. 

Figure 4 illustrates a network that generates 
a simplified version of Three Blind Mice. It con-
sists of three interconnected looped structures 
(sub-networks) that are part of a larger looped 
structure. In order for the sub-networks to be 
connected it is necessary for each sub-network to 
have one node with multiple outputs. In Figure 
4, nodes that have multiple outputs are: A-3, B-4 
and C-8. 

A B

CA

A-1 A-2

A-3

B-1 B-2

B-4

B-3

B-5

C-1 C-3

C-6

C-5

C-2

C-4

C-7

C-9

C-8C-9

A-3 A-2

A-1

(A-3 to B-1)
(B-4 to B-5)

(A-3 to A-1)

(A-3 to A-1)

(B-4 to 
 B-1)

  

Figure 8. A nested looping structure. 

 
Whenever a node has multiple output con-

nections some sort of rule must be employed to 
determine which of the connections will be acti-
vated1. The rule that is relevant in the example 
in Figure 4 is that the two outputs are selected 
alternatively. For example, on the first firing of 
B-4 the connection will be B-4 to B-1 and on the 
second firing the connection will be B-4 to B-52. 
In the melody, motif C is heard three times. To 
make this possible in the network an extension 
to the connection rule must be applied. This is 
done by creating a connection list that is applied 
sequentially. So for node C-8 the connection list 
will be: 

1. C-8 to C-9 
2. C-8 to C-9 
3. C-8 to C-10 

Multi-layered Structures 
While the example in the previous section does 
contain some iteration the network does not dis-
play any sophisticated behavior as a result. That 
is, the structure of the network does not repre-
sent the evolution of the elements of motif A. 
Instead the three motifs must be created sepa-
rately and as a result, any short-term elaboration 
of the melody cannot be represented. This is the 
case with motif C, where there are in fact three 
variants of the motif but only one is represented 
in the network shown in Figure 4. 

A more sophisticated way of representing 
Three Blind Mice is to create a multi-layered net-
work that adds information to a network rather 
than replacing it with a new sub-network.  Es-
sentially, this preserves the topology of the 
original network, but makes the spatial layout 
and relationships easier for the composer to un-
derstand in terms of melodic structure and pro-
gression. In order to do this it is necessary to 
find any elements of the melody that are re-
tained from one motif to the next.  

The rhythmic structure of Three Blind Mice 
does contain repeated elements that are elabo-
rated as the melody progresses. As shown in 
Figure 5 below, the rhythmic motif in A contin-
ues through all 8 measures of the melody. Addi-
tional time points are added with successive mo-
tifs and are retained until the end of measure 7 
after which there is a recapitulation of the open-
ing motif. The exceptions to this are the time 
points added in measures 6 and 7. These addi-
tions only occur for one measure each and can 
be seen as elaborations that are necessary for 
text setting purposes. The analysis shows a dis-
tinct evolving pattern stemming from the initial 
rhythmic motif. 

                                                        
1 In this discussion we assume only one input per node. 
2 This rule is also applied in the example in Figure 2 where the second and third nodes in the network both 

have two outputs.  
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In rhythmic terms, the melody can be repre-
sented as a series of networks that run simulta-
neously (although starting and ending at differ-
ent times). While rhythmic structures are re-
tained, pitch material associated with particular 
time points change. In order to deal with this, a 
list of pitches for each node can be used. Here 
the list is read sequentially, the position in the 
list being advanced each time the associated 
node fires. The subnets discussed above and 
their related pitch lists are shown in Figure 6. 

sn 1
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8

1 3 5 7 9 112 4 6 8 10 12

A

B

C

A

rhythmic divisions

sn 2

sn 3

sn 4

sn 5

sn 6

1

 
Figure 9. Overlaid rhythmic structures in Three Blind 

Mice. Black dots represent the addition of a new 
time point. Subnets derived from the analysis are 
enclosed in grey boxes and are annotated �sn�. 

As the subnets start and stop at different 
times some method must be used for determin-
ing when a node is to be active. A simple con-
vention for turning subnets on is to have an acti-
vation threshold. Here a node only becomes active 
after a certain number of messages have been 
passed to it. An easy way to include this is to 
include a non-active state in the pitch list. For 
example the pitch list for subnet 2 would be: 

n1: Nx2, F3x2, B3x3, N 
Here N = non-active state. 

Another way to conceive of the subnet layer 
approach is to think of the layers as part of a 
three dimensional space. Here arcs between 
nodes in different layers could be used to acti-
vate the successive layers. This requires a 
spawning process that creates multiple activa-
tions within the network. For this to occur a spe-
cial connection rule must be used where two or 
more connections from one node can be acti-
vated simultaneously. With multiple activations 
it is therefore possible to create polyphonic mu-
sical textures and, given the right configuration, 
complex feedback interactions between sub-
networks.  

The pitch list technique discussed previously 
represents an extension to the concept of the 
pitch series. The classical pitch series consists of 
an array of pitches that are applied to time 
points in a serial fashion. The technique de-

scribed above has unique arrays for each time 
point. This has interesting, and potentially, very 
useful possibilities for the representation of ver-
tical pitch structures in horizontal environments 
such as a nodal network (although a nodal net-
work is not needed to implement this tech-
nique). For example the pitch lists shown in Fig-
ure 6 show chords that are voiced across time, 
an example of which is the pitch list for 1.1 (sub-
net 1, node 1). This pitch list constitutes the C 
Maj chord. Other examples include 1.2 - Dom7th 
and 3.1 Dom7th. The pitch list technique enables 
the exploration of horizontal harmonic struc-
tures. For example, if the chords in the pitch lists 
for Three Blind Mice where changed to those 
from a different mode, then the melody would 
be transformed with a new harmonic structure. 

1

Pitch Lists 
n1: F3x2, B3x3

Start after 2 cycles of Sn1

 
Figure 6. Subnets and related pitch lists for Three Blind 

Mice. 

In the rhythmic domain, the multilayered 
approach enables subtle yet complex evolution 
of rhythmic structures and has advantages over 
a two-dimensional structure in that the rhythmic 
structures can be maintained across time. Like 
the potential for harmonic transformation via 
pitch lists, base level transformation of the 
rhythmic structure is relatively easy to perform. 
As the layer approach enables the representation 
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of different hierarchies of structure, transforma-
tion can in fact occur an all of these levels. 

This would suggest that it is desirable to cre-
ate a three-dimensional environment within 
which to work. There may however, be a trade-
off between the flexibility that a three-
dimensional environment offers against the 
complexity of working within it.  

Emergent Music 

So far we have discussed nodal networks from 
the perspective of taking an existing piece of 
music and representing it in a nodal network 
structure. This approach is useful in that it 
brings to light structures that may be musically 
useful. It can be argued however that this is not 
the best approach to take because real-time 
nodal networks may generate music that does 
not necessarily conform to the kind of structures 
found in music such as the Three Blind Mice ex-
ample. They may however be of interest for 
other reasons.  

One obvious approach is to use networks in 
an experimental fashion. Here the network is 
configured without a fixed goal in mind. Instead 
the focus is on emergent properties of a particu-
lar network structure. It can be argued that this 
approach makes the best use of the structural 
properties of networks. The nature of real time 
interaction also facilitates easy experimentation 
and play with a complex system. 

It is possible for example, to configure net-
works that can create musical textures that 
would be very difficult to calculate manually. 
Furthermore they can create textures with ongo-
ing change based on a defined set of elements. 
The network shown in Figure 7 generates a mel-
ody that contains many motivic fragments but 
does not repeat for a least 80 measures. This 
network has a simple two-dimensional design, 
comprising nine nodes, each of which outputs a 
fixed pitch. Connection between the nodes are 
however relatively complex; there is an inner 
core of four nodes that are all interconnected 
and an outer layer of five nodes that are more 
sparsely connected. This design focuses activity 
on the inner core allowing for variation coming 
from the outer layer. 

The connect rule is also simple, for every in-
put the output connection is selected sequen-
tially (where there is two or more outputs). 
While there is motivic diversity in the melody 
the main variation is through recombination 
from available pitches and durations. Therefore 
long term changes in register, harmonic and 
rhythmic structures are not present. 

A more sophisticated design would allow 
the interaction between the nodes to influence 
parameters such as pitch and duration. This can 
be achieved via the use of relative parameters in 

the nodes. For example a node can be designed 
that has a pitch increment which outputs a pitch 
value either higher or lower than the value in the 
node that caused it to fire. This approach can be 
taken for all parameters that define a note. Rela-
tive values can therefore create change over time 
and also allow for true emergent behavior to 
evolve. 
 
a. 

D3

C4

C3Eb3

Gb3

C2

G3

A3

Eb2

 
b. 

 

Figure 7. a) Long melody network diagram, b) transcrip-
tion of the output. 

The Nodal Software 

The Nodal software system, currently in devel-
opment, implements many of the design features 
discussed in this paper. Figure 8 shows a screen 
shot of the software in operation. Networks are 
created in real time and displayed in the main 
window. Multiple networks and players are 
possible, with each player starting from a possi-
bly different node. Each node is assigned a set of 
attributes that specify player state changes car-



ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005 
 

Page 101 

ried by that node (these are a generalisation of 
the parameters discussed in previous sections). 
In general, attributes are either setting or modify-
ing. Setting attributes set a property at an abso-
lute value. Modifying attributes modify the cur-
rent value carried by the player. Common at-
tributes include pitch, duration, volume, and 
note-on velocity. The system is extensible so cus-
tom attributes can easily be added to the system. 

Attributes can be edited on a per-selected-
node basis in specific attribute editors (right 
window). These editors can also be set from a 
MIDI input device. The software design also 
permits arcs to modify continuous information 
such as volume or expression. Attribute editors 
for arcs are currently under development. 

 
Figure 10. Screen shot of Nodal in operation. 

Outgoing arc order and sequencing can also 
be set in the right window. A novel colour coded 
arc manipulation system allows the user to 
change arc sequencing intuitively, accommodat-
ing arc insertion and deletion with minimal 
modification of existing ordering. This system 
allows the user to set output arc order and enu-
meration for a given node. Further controls al-
low switching between random and sequential 
ordering where individual arc repeat counts be-
come probability weights. 

Conclusions 

The design of Nodal is still evolving. In this pa-
per we have looked at how a number of design 
issues and constraints can be developed using 
analysis of seemingly simple musical structures. 
Developing software with complex or unconven-
tional user-interfaces can be a time and resource 
intensive task, so any design and operability is-
sues that can be established before the software 
is built will be beneficial. However, in many in-
stances these issues can only be determined by 
actually building and using the software, since 
no analogue exists in conventional systems. In-
tuition and heuristics play a strong role here. 

Nodal networks appear to offer interesting 
new possibilities for the composer. It remains an 

on-going investigation as to how we can best use 
and design them in software to realize their full 
potential. 
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