
ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005

Page 128

Greg Schiemer

and Mark Havryliv
Faculty of Creative Arts,
University of Wollongong
Wollongong, 2522
Australia
schiemer@uow.edu.au
mhavryliv@hotmail.com

Pocket Gamelan:
An Extensible Set of
Microtonal Instruments

Abstract
This paper describes the prototype for a set of mobile instru-
ments in which java phone technology has been adapted for
performing microtonal music. The prototype was developed
using widely available mobile phone handsets instead of
building new hardware. The paper discusses aspects of j2me
development together with limitations of the mobile platform
used for the project. Development issues such as real-time
audio, microtonal MIDI implementation and control using
Bluetooth communication are discussed. The paper also de-
scribes tools developed so existing algorithmic composition
and tuning software can be used to compose music for mo-
bile devices. It concludes with discussion of various perform-
ance scenarios for mobile electronic instruments to realise
music composed in tuning systems outside twelve-note divi-
sions of the octave.

Introduction
The Pocket Gamelan is an ensemble of mobile musical
instruments that are designed to be easy to play, quick
to learn and produce audible tones that are micro-
tonally tunable [Schiemer et al 2004]. The musical en-
semble consists of large numbers of mobile phone
handsets each operated independently by a single user.
Each unit functions either as a control device, a sound
source or some combination of both. Each unit is bat-
tery powered and able to take advantage of new de-
velopments in mobile digital computing [Schiemer et
al 2003].

The prototype has been developed in java using
mobile technology known as Java 2 Micro Edition, or
j2me [Java Community Process 2003, 2002a]. J2me is
used in hand-held appliances such as palm pilots and
mobile phones.

The Pocket Gamelan project seeks to develop a
software prototype for a networked ensemble of hand-
held mobile instruments. Wireless communication be-
tween hand-held instruments allows enhanced interac-
tion between ensemble members.

In its simplest form, each unit in the ensemble is a
hand-held sound source that is played by pressing but-
tons. Players have the freedom to move each sound
source while performing.

Wireless communication will extend the capabili-
ties of the mobile user-interface by allowing button
controls to be operated remotely. These capabilities

will be further enhanced as wearable wireless sensors
are included. In the long term, a wireless network will
allow musical applications to be distributed between a
web-server and multiple clients.

The aims of the Pocket Gamelan project are:
 to create a prototype network of mobile instru-

ments for performing music free of the tuning
constraints associated with conventional music
performance interfaces;

 to use this prototype to explore current develop-
ments in tuning theory using new performance
paradigms.
The difference between music created using this

technology and music created using conventional elec-
tronic music systems such as MIDI hardware and
desktop software is the degree of mobility and auton-
omy that a mobile instrument gives to each player. The
extent to which this affects musical outcomes is limited
only by the ways in which performers are allowed to
move and the kinds of spaces where performances are
presented.
Whereas desktop computing tends to concentrate the
means of producing music in the hands of a single
user, mobility offered by this technology introduces
new possibilities for musical interaction between
members of an ensemble. �Gamelan�, in the title, is a
musical metaphor for this kind of group interaction.

Performance scenarios
Three performance scenarios have been identified.

Scenario 1: audio-yo
In scenario one multiple sound sources are fine-tuned
by performers who select �preferred intervals� as part
of the performance process. The scenario is based on a
work created by the principal author in 1981 [Schiemer
et al 2004] in which an ensemble of battery-operated
mobile sound sources are swung in a circular motion
on a 1-metre cord to produce doppler shifted variants
of pre-set pitches.

Scenario 2: group pokemon
In scenario two ensembles of performers trigger pre-
tuned MIDI note events or activate sequences of pre-
tuned MIDI note events. These are locally activated by
pressing buttons on individual handsets.

pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

mailto:schiemer@uow.edu.au
mailto:mhavryliv@hotmail.com

ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005

Page 129

Scenario 3: remote interaction
The third scenario is an extension of the first two sce-
narios except that one performer may actively modify
sounds created by another. Buttons pressed locally
activate commands that affect other clients in the net-
work. By operating a single key one may modify the
pitch or amplitude envelope or a tuning algorithm
running on a remote device.

Development Environment
Musical applications for mobile devices were initially
developed in j2me using a java desktop development
environment in Windows XP.

Program code is first developed on the desktop us-
ing IBM�s project development environment called
Eclipse. Sun�s Java Wireless Toolkit is used to simulate
the operation of the handset. Once applications are
tested and simulated on the desktop a Nokia 6230 mo-
bile phone handset is then used as the target device.
Prior to performance, applications consisting of java
code are downloaded into the handset using a USB
cable.

In effect the mobile handset becomes a generic
hardware platform for software musical instrument
applications which define the musical functionality of
the handset. It is possible to implement new perform-
ance scenarios by developing new software instru-
ments that redefine the functionality of each mobile
handset.

The Nokia 6230 was chosen as the j2me target de-
vice because it was one of the first commercially avail-
able java phones to implement the Connected Limited
Device Configuration protocol CLDC1.1 [Java Com-
munity Process 2003]. Though this has proved not to
be a critical issue for implementing alternative tuning
systems, the quality of its sound together with its sup-
port for the MIDI Tuning specification made this
phone a satisfactory choice for the initial stages of the
project.

j2me
j2me development has focused on three areas:
 Real-time audio generation
 Microtonal MIDI implementation
 Bluetooth control

Two of these - real-time audio generation and
microtonal MIDI implementation - form the frame-
work for managing the allocation of media resources
within a compiled j2me application.

Real-time audio generation
In order to support scenario 1, an applet was devel-
oped to generate multiple sine-tones. Tuning was im-
plemented using the variable sampling increment

technique with interpolation; for more detail see
[Schiemer et al 2004, 2003].

However, as the Nokia 6230 does not support syn-
thesis of audio in real-time, this applet has not yet been
tested on a handset. We are still looking for other suit-
able j2me target devices that support streaming audio
as this will allow wave-table synthesis, additive syn-
thesis, frequency modulation and formant wave syn-
thesis.

Microtonal MIDI implementation
 The Nokia 6230 supports MIDI files. However, its
support for raw MIDI does not fully comply with the
MIDI standard. While this made it unsuitable for sce-
nario 2, it was possible to use it for scenario 1. An os-
cillator was made by sending a MIDI Note On fol-
lowed by streams of MIDI channel messages to control
a sound envelope. MIDI Controller 7 messages pro-
duce continuous amplitude envelopes. A single Note
On and MIDI Pitch Wheel messages, together with
MIDI portamento, produce continuous pitch enve-
lopes.

Despite MIDI tuning resolution in the Nokia 6230,
this implementation of microtonal MIDI is a work-
around. We are still looking for target devices whose
implementation of raw MIDI complies with the MIDI
standard.

Bluetooth control
The Nokia 6230 is also Bluetooth-enabled. This allowed
us to modify the volume and pitch of a moving sound
source by remote control. It will also allow multiple
parts played on different handsets to be synchronised
or played via manual operations performed on a re-
mote handset.

All Bluetooth communication is defined by the
protocol specification and the operation of the Blue-
tooth stack [Java Community Process 2003]. Within the
Bluetooth stack, the lowest-level communication layer
accessible to a j2me application is the Logical Link
Control and Adaptation Protocol, or L2CAP. Other
protocols that handle data in a variety of packet for-
mats operate via L2CAP.

While existing j2me APIs such as RFCOMM and
TCS-binary allow synchronous transmission of large
data packets, there are noticeable latencies when these
are used to transmit small message packets such as
MIDI messages.

On top of the L2CAP layer, we have found it nec-
essary to create a customised API for Asynchronous
Input Output � shown as AIO in Figure 1. This was
necessary to accommodate smaller message packets
within the Bluetooth Protocol. This API supports asyn-
chronous byte-oriented protocols such as MIDI mes-
sages where data is sent in packets whose size is de-
fined by the MIDI Status Byte.

ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005

Page 130

Figure 1 shows the Bluetooth stack and its relationship with ex-
ternal asynchronous communications devices such as
sensors and actuators and MIDI.

Asynchronous Input and Output data sent or re-
ceived via Bluetooth is transmitted as MIDI message
packets. Data transmitted to actuators or received
from sensors will also be transmitted as MIDI message
packets.

A simple control MIDlet shown in Figure 2 dem-
onstrates how asynchronous Bluetooth communication
works. A momentary single-byte phone key operation
performed on a master device is instantaneously trans-
mitted to a slave device.

In this API a master can also address each slave
individually before each MIDI message. A pre-byte
transmitted before each MIDI message packet effec-
tively extends the number of available MIDI channels
in a single Bluetooth channel.

Figure 2 shows a single key (�8�) pressed on the master device

(larger phone). The corresponding key appears in the
MIDlet which displays the pressed key on both the mas-
ter and the slave devices.

The Bluetooth pre-byte is an 8-bit positive number
that is used to address a slave device individually. It
contains a code that selects a Bluetooth channel and is
sent via Bluetooth immediately prior to sending the
MIDI message. A positive pre-byte sent as part of
Bluetooth transmission will not interfere with the way
MIDI parses message packets because MIDI uses an 8-
bit negative number to signify the start of a MIDI
packet and determines the size of each packet by pars-
ing each MIDI status byte. If an 8-bit negative number
follows, this indicates that a Bluetooth transmission
begins without a Bluetooth channel address, i.e. it is
broadcast on all Bluetooth channels. An 8-bit positive
Bluetooth pre-byte will therefore work with every va-
riety of MIDI packet except for MIDI Running Status.

In order to make this fully compliant with MIDI,
we have decided that the AIO recognises MIDI Run-

ning Status messages received from a non-Bluetooth
source. It will relay these messages over the Bluetooth
network using the shortest MIDI packet available i.e.
all two- or three-byte packets or MIDI System Exclu-
sive.

The total number of MIDI channels for a full com-
plement of 7 Bluetooth channels is 112 (i.e. 7 x 16). In
terms of mobile phones, this represents 112 individu-
ally addressable mobile phones each receiving on a
dedicated MIDI channel unconstrained by operating at
MIDI transmission speeds.

Composition Interface
Two public domain resources facilitate the use of mo-
bile devices for microtonal composition. Pure Data, or
PD, an algorithmic composition language developed
by Miller Puckette [Puckette 1996], is used to compose
for mobile phones. Scala, tuning analysis-editor-
librarian software developed by Manual Op de Coul
[Op de Coul 1992], is used to implement microtonal
tuning.

Composers familiar with a graphical object-
oriented interface can apply these skills in composing
for mobile phones using PD. While it is possible to
compose music for mobile phones by writing entirely
in java code, a graphic composition environment
seems more appropriate to help composers design and
simulate the kind of interactive musical applications
that will run in a mobile environment.

Scala is another public domain freeware resource
that composers will find invaluable for creating micro-
tonal compositions. Scala has a scales archive contain-
ing over two thousand tunings including both just in-
tonation and various equal-division-of-the-octave, both
historical and experimental. Moreover, Scala allows a
user to create command scripts that export its tuning
resources to external programs including PD.

However, in order to make a more accessible com-
position interface for mobile devices it was also neces-
sary to develop a desktop Java application that cross-
compiles from PD to j2me.

pd2j2me
pd2j2me allows musical applications composed for
mobile phones to be simulated in a desktop environ-
ment [Schiemer and Havryliv 2005]. It consists of two
objects. One reads a PD file and translates it into java.
The other is a PD object that simulates the functions of
a mobile phone handset.

Given the limitations of keypad, screen and avail-
able memory in a typical j2me device, it was decided
to build a cross-compiler that converts PD files into
java rather than a run-time PD interpreter for j2me.

A composer working on a desktop PC writes a PD
file in which a number of mobile phones are config-
ured. The operation of each phone can be simulated
and tested before pd2j2me imports code from the

ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005

Page 131

working PD patch and compiles a j2me source file
which is finally downloaded into each handset.

Like PD, the pd2j2me compiler displays intercon-
nectable graphic objects. The compiler supports:
 simple j2me expressions (e.g. var = arg + const);
 calls to pre-built generic j2me classes that support

more complex objects, e.g. line, metro, delay, and;
 simplified audio, MIDI, Bluetooth wireless connec-

tion and user IO

PD tuned from Scala
Automated Scala commands allow a composer to ac-
cess Scala�s microtonal resources and export them to
PD. The following PD patch takes tuning values di-
rectly from Scala�s tuning table.

Figure 3 Tuning values exported from Scala are accessed in PD as

linear factors.
Tuning values in the PD patch are shown as linear

factors which are formed by dividing the numerator by
the denominator of the just tuning ratio. When multi-
plied by a reference frequency a set of linear factors
will produce the pitches of a scale. Scala will supply
linear factors for both just intonation and equal tem-
pered scales

Conclusion
Development of new applications for mobile phone
technology is driven predominantly by concerns of the
corporate world. We hope this technology whose ori-
gins are derived from Antheil�s musical instrument
design [Price 1983] will once more be driven by com-
munities of musicians just as MIDI users did two dec-
ades ago.

The mobile phone will become less like a virtual
shopping trolley and more a playground for communi-
ties of musical hunters and gatherers to explore the
world�s tuning systems and understand the diversity
of human imagination that created them.

Acknowledgments
This project was funded by an Australian Research
Council Discovery Grant for 2003-2005.

References
Schiemer, G., Sabir, K. and Havryliv, M. 2004 �The

Pocket Gamelan: A J2ME Environment for Just In-
tonation� Proceedings of the International Computer
Music Conference, Miami, USA

Schiemer, G., Alves, W., Taylor, S. and Havryliv, M.
2003 �The Pocket Gamelan: building the instru-
mentarium for an extended harmonic universe�
Proceedings of the International Computer Music Con-
ference, Singapore

Java Community Process 2002a Mobile Information
Device Profile (MIDP) 2.0

Java Community Process 2003 Connected Limited De-
vice Configuration (CLDC) 1.1

Java Community Process 2002b JSR-000082 Java APIs
for Bluetooth
http://jcp.org/aboutJava/communityprocess/fin
al/jsr082/index.html

Puckette, M. 1996: Pure Data software V0.38
http://at.or.at/hans/pd/installers.html

Op de Coul, M. 1992 Scala available at
http://www.xs4all.nl/~huygensf/scala/

Schiemer, G. and Havryliv, M. 2005 "Pocket Gamelan:
a Pure Data interface for java phones" Proceedings
of the New Interfaces for Musical Expression Confer-
ence, Vancouver, Canada

Schiemer, G. and Havryliv, M. 2005 "Pocket Gamelan:
a blueprint for performance using wireless de-
vices" accepted for Proceedings of the International
Computer Music Conference, Barcelona, Spain

Schiemer, G. and Havryliv, M. 2004 �Wearable Firm-
ware: The Singing Jacket� Proceedings of the Aus-
tralasian Computer Music Conference, Wellington,
New Zealand

Price, R 1983: Further Notes and Anecdotes on Spread-
Spectrum Origins see IV. Shortly before Pearl Har-
bour: The Lamarr-Antheil Frequency-Hopping In-
vention, IEEE Transactions on Communications Vol.
COM-31, No.1 pp. 89-91

http://jcp.org/aboutJava/communityprocess/fin
http://at.or.at/hans/pd/installers.html
http://www.xs4all.nl/~huygensf/scala/

