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Abstract 
This paper introduces the Environment for a Semiotic Con-
trol Interface (ESCI). ESCI inherits the motivation of previ-
ous systems such as W and the Open Sound Control (OSC), 
while extending their functionality to enable a broader range 
of type definitions and peer-to-peer collaboration. ESCI al-
lows the passive structures of applications to be explored in 
similar fashion to the OSC namespace. ESCI adopts a semi-
otic approach in which the cooperative interaction of OSC is 
extended through the possibility of competitive and symbi-
otic interaction. 

Introduction 
The chief task of a computer music user-interface is to 
assist in the difficult translation of musical, intuitive 
and informal ways of thinking to a formal representa-
tion (Oppenheim 1991b). Currently there is no single 
target representation. Instead there exist many com-
puter music application and interface designs each 
presenting their own musical ideas through the soft-
ware (Puckette 2002). As a result, every system or in-
terface tends to enforce a method of description which 
then constrains or biases the composer's view (Roads 
1996).  

This situation is constantly improving as each evo-
lution of computer music software provides a more 
powerful language, a better user interface or more ro-
bust facilities. Yet as the interface becomes more spe-
cialized, its lifetime is reduced by increased complex-
ity, cost of maintenance or an intrinsically tight bind-
ing of the code to hardware (Bernardini 2002).  

The poor rate of software survival has led to a 
situation in which simpler, modular and customisable 
components are used in conjunction to form a more 
complex system (Polfreman 1995). Examples include 
single applications like CSound making use of the unit-
generator abstraction, or multiple applications cooper-
ating through established interfaces such as the Musi-
cal Instrument Digital Interface (MIDI) or OSC.  

Collaboration between components has been de-
scribed as a software ecology. Furthermore, it has been 
suggested that in order to move collaboration in the 
field of computer music to a higher level, a system is 
needed that facilitates the development of software 
ecologies at many levels (Zicarelli 2002). 

This paper introduces the Environment for a Semi-
otic Control Interface (ESCI) aimed at exploring the 

possibility of using a semiotic control approach for 
computer music. In order to observe application be-
haviour, ESCI promotes shared access to passive and 
internal data structures. Although these passive struc-
tures have a formal meaning with respect to the origi-
nal application design, there is no reason that they 
should not be reused in novel or creative ways. This 
point of view corresponds to the idea of a performer 
interpreting the formal representation of traditional 
music. 

 
�Insofar as every situation in a 

musical piece may (or may not) 
announce a foreseeable but unpre-
dicted musical solution, music of-
fers another example of a semiotic 
system in which each situation 
could be differently interpreted.� 

(Eco 1976) 
 

The next section introduces the possibility of a 
range of low to high-level computer music representa-
tions. Computer music control is then introduced as a 
method for interacting or collaborating at a particular 
level of representation. This results in the need for in-
terface descriptions of either the passive structures or 
the active methods. A semiotic approach is then con-
sidered along with the new modes of interaction it 
provides. Finally an overview of ESCI is presented 
with respect to reliability and architectural considera-
tions. 

Computer Music Representation 
When introducing a panel discussion at the 2002 Dart-
mouth Symposium on the Future of Computer Music 
Software, Eric Lyon (2002) suggested that perhaps the 
history of computer music languages and systems is 
more or less about survival paradigms. This focus on 
software survival reflects the amount of time required 
for computer music systems to mature and become 
accepted by the wider community. 

Lyon advocated that CSound (Music-N), 
Max/MSP, and SuperCollider can be considered to 
represent the three surviving paradigms of computer 
music. Although very different systems, it is reason-
able to suggest that all three are remarkably similar. 
They all convert a visual or textual language into a 
network of connected unit generators. Within CSound 
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this is the orchestra file, MAX/MSP uses such a net-
work as a visual interface, and the SuperCollider 
Server abstracts this aspect out of the SuperCollider 
client. 

 It is reasonable to suggest that for any sample 
produced by the synthesis algorithm, a finite function 
must have been applied to generate it. The network of 
unit generators provides the description for such a 
function. However, this abstraction only applies for a 
single sample and thus only a single instance of time. 

Temporal control of the unit generator network 
can be achieved using the score in CSound or an ob-
ject-oriented language similar to Smalltalk in Super-
Collider. Max uses what has been called a resource 
model (Dannenberg 1991) which is different again. 

All three paradigms control a network of unit gen-
erators through their own music representation. As a 
result, all three are forced to provide solutions to the 
associated problems such as style of description, rep-
resentation of time, hierarchy of representation and the 
provision for multiple views of representation (Dan-
nenberg 1989). 

The survival of these systems validates the repre-
sentation and interface adopted. The differences be-
tween them suggest that the possibility of a single rep-
resentation is very unlikely. As a result, these systems 
remain isolated and provide little assistance for new 
developments outside of their existing frameworks. 

An interface representation which could be used 
between systems is possible, but likely to provide only 
the better understood subset of functionality (Open-
heim 1991a) in which novel composition is outside the 
scope of the formalism (Helmuth 1996). An alternative 
is to construct a single monolithic computer music ap-
plication. However, this can limit the composer when 
attempting innovative or unorthodox works (Roads 
1989), and hamper development given that there seems 
no practical method to include every individual idea 
for the reliable benefit of all (Vercoe 1996). 

Within this section a single low-level representa-
tion has been suggested as well as the unlikely creation 
of a single high-level representation. An environment 
aiming to assist development and maintenance for new 
representations or interfaces will need to find a niche 
somewhere between these two extremes. The subse-
quent section argues that computer music control pro-
vides a good target level. 

Computer Music Control 
The variety of modes in which computer music appli-
cations are used leads to a number of possible defini-
tions of control. For the purpose of this paper, control 
is defined as the correlation between the physical pa-
rameters or interface of the system and the perceptive 
concepts or intention of the composer. Given this defi-
nition, control has been suggested as a major problem 
for computer music applications (Oppenheim 1986). 

A substantial part of this problem relates to the 
volume of data required to realize music of any sub-

tlety (Loy 1989). Furthermore, the introduction of real-
time control introduces a new perspective on composi-
tion (Lefford 1999) encouraging a preference for lower 
latency, higher precision and higher data rates (Wessel 
2002).  With this new perspective comes the need to 
reconsider the traditional split of representation into 
active procedures and the passive data structures that 
support it (Roads 1989). 

Another aspect of real-time behaviour is that con-
trol is not always a human-machine interface. Control 
can also be exerted between machines using protocols 
such as MIDI or OSC. This introduces the possibility of 
multiple machines which in turn allows multiple users. 
As a result, there is no longer a single interface, but 
instead a network of, or perhaps a distributed system 
for control. This promotes new possibilities for col-
laboration between composers, performers, developers 
and machines. 

A group and system known as The Hub (Collins 
2003) provides a good example of this. Making little 
distinction between the method used for composition 
or performance, The Hub adopts a framework in 
which a single machine is dedicated to passing mes-
sages between multiple machines. This message pass-
ing interface supports the individual contribution to 
the composition or performance by allowing each 
member a better understanding of the application's 
distributed state. 

The Hub represents a custom solution to a specific 
control problem. As a result, its ability to support a 
wider range of control problems is limited. MIDI is in 
a similar situation (Chabot 1985). In order to generalise 
the framework a method is required to describe the 
interfaces provided by different components of the 
computer music system. 

Interface Description 
The traditional split of computer music representation 
into active procedures and passive data structures is 
undoubtedly a result of software-engineering method-
ology � in particular object-oriented design. In this sec-
tion it is argued that traditional active interfaces, such 
as the Common Object Request Broker Architecture 
(CORBA), do not necessarily provide the best interface 
description for computer music applications. Instead 
passive interfaces such as W or the Open Sound Con-
trol (OSC) are considered better alternatives. 
 

Traditional Active Interfaces 
In line with the aims of software-engineering, the ob-
ject-oriented paradigm is designed to simplify devel-
opment, ease maintenance and hopefully improve the 
possibility of component reuse. One method of achiev-
ing this is through the encapsulation of passive data 
behind the object's active interface. These objects can 
be organised into a hierarchy which should reflect the 
structure of the applications. 
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Using object-oriented techniques for computer 
music representation has been a prominent approach 
when trying to providing multiple views of a single 
component (Roeder 1989), manipulation of application 
components (Holland 1999), and representation port-
ability between different applications (Dyer 1989). 
However, the success of such developments is not 
clear. In fact, for a long time it has been suggested that 
a �toolbox� would be more useful than a closed system 
(Assayag 1986). 

Some more recent developments in computer mu-
sic have adopted CORBA as such a toolbox (Behles 
1996; Assayag 1996). CORBA allows an application 
developer to define an active (method based) interface 
within an object-oriented environment. Access to pas-
sive data can then be provided through this active in-
terface. The primary feature of CORBA is its pro-
gramming language and operating system independ-
ence. This allows it to be incorporated into almost any 
style of application. Also the interface defined is then 
available across the network which ties in well with 
the idea that control is a problem for distributed sys-
tems. 

There are also a number of negative aspects relat-
ing to the use of CORBA. As a result of its generality 
and maturity, CORBA is a large and intricate system. 
Learning to use it well is a difficult task and applica-
tion development becomes more complex as the origi-
nal design must take into account the requirements of 
CORBA.  

Since many original computer music applications 
are exploratory and attempt to prove a concept, repre-
sentation or interface, it becomes unlikely that the time 
investment required to adopt a CORBA framework 
will be considered reasonable. Modifying proven ap-
plications to use CORBA would seem just as unlikely. 
A simpler interface will have a smaller influence on the 
design of a new application; furthermore, it will be 
easier to incorporate into existing and proven applica-
tions. As a result, simplicity becomes a key factor in 
determining the uptake of such interfaces. 

Two Passive Interfaces 
In opposition to the complexity of an object-oriented 
paradigm, there exist two systems which demonstrate 
an alternative: W (Dannenberg 1995) and OSC (Wright 
1997). Both can be considered an interface to the pas-
sive components of computer music, because both are 
based on the idea of assigning and retrieving values 
with basic types using asynchronous messages. There-
fore, it is more a process of retrieving or setting object 
values, rather than calling object methods. Of course 
the act of setting values is also an event which can 
trigger a return value to be sent, so in this respect 
methods can be simulated within the original frame-
work. 

OSC provides less overall functionality than W 
and also makes few assumptions regarding flow of 
program control. As a result, it is much easier to inte-

grate OSC into existing applications. This has included 
CSound, Max/MSP, SuperCollider and many more 
(Wright 2003). 

Objects in an OSC environment are dynamically 
organised into a hierarchy (namespace) which reflect 
the features of the application (Wright 1998). A foreign 
namespace can be explored to reveal the objects, and 
their respective types, within the hierarchy. As a re-
sult, OSC enables software to be self-documenting and 
transparent in its functionality (Wright 2003). 

If control is the correlation between physical pa-
rameters of the system and the perceptive concepts or 
intention of the user, then this ability to explore the 
system's functionality becomes valuable. Exposing the 
system to the user and thus providing a path for the 
�user to become the developer� (Nieberle 1988) is of 
significance in an environment where the original de-
veloper can not provide the functionality or represen-
tation required by all computer music users. 

This mixing of roles � where the user is the com-
poser, performer and developer � creates a new situa-
tion for user-interface design. In a creative situation 
where there is no limited set of tools, and also no sin-
gle way for those tools to be applied, traditional user 
interface design becomes less appealing. If functional-
ity of the system is explorable and modifiable, then the 
user gains a enhanced capacity to create a personalized 
environment. Respective interface features can be ar-
ranged into a pattern which more adequately reflects 
the user's own perspective (Todoroff 1997). 

In this section active and passive interfaces were 
introduced. Although it was primarily described from 
a software development perspective, many of the is-
sues raised influence user-interface design and can 
promote new opportunities for user control. The next 
section explores the idea that these new opportunities 
move the previously symbolic manipulation of com-
puter music applications, to something more semiotic. 

 

Semiotic Control 
The passive interfaces described are only of use to the 
software developer. In order to control this aspect, a 
human-machine interface is required. From a semiotic 
standpoint, the connection between these two inter-
faces requires a �code� (Eco 1976) that apportions the 
control system to the elements of the musical system 
(Roeder 1989). 

OSC provides the transport for this code. When 
applications such as CSound, Max/MSP and Super-
Collider incorporate the OSC system, collaboration 
over this transport becomes possible. However, from a 
semiotic perspective the current paradigm would seem 
to only support cooperative behaviour but not two 
other suggested modes of interaction: competitive and 
symbiotic (Iazzetta 1996). 

In cooperative interaction all components of the 
system share the same goals. This would seem to be 
the only form of interaction currently available since 
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all collaboration between components is arranged at a 
global level by a standardised control mechanism. The 
control provided by OSC represents an abstraction 
from the complete system behaviour to a simplified 
subset of functionality. Furthermore, manipulation of 
that functionality is generally expressed in the terms of 
the existing computer music environments. 

Competitive interaction suggests a situation where 
the success of one component implies the failure of 
others. Symbiotic interaction suggests the existence of 
different goals but the ability to share the same context 
or environment. Although probably less useful than 
cooperative interaction, these two can be interpreted to 
represent unexpected reuse of the system or user re-
shaping of the environment. Both of these interactions 
can allow the user access to normally hidden parts of 
the system, the ability to separate components into 
smaller parts and reinterpret the passive representa-
tion as desired. 

By disrupting the traditional user-interface para-
digm, an interface based on a historically determined 
representation of the problem can encourage creative 
problem-solving (Traux 1986). Therefore, creative con-
trol over the environment promotes the user's ability 
to imagine and implement musical processes that oth-
erwise may not be feasible (Hamman 1999). 

An abstraction from the functionality can mostly 
provide an expected and cooperative interaction. In 
order to provide more competitive or symbiotic inter-
actions � and in turn support a semiotic environment � 
the ideas of W and OSC need to be extended. In the 
next section ESCI�s approach to such an extension is 
introduced. 

 

Approaching a Semiotic Environment 
This section introduces ESCI (Environment for a Semi-
otic Control Interface). ESCI represent one approach to 
the difficulties involved in providing the semiotic in-
teractions described in the previous section. It does not 
aim to develop a user interface model, but instead ex-
ists as a code transport between distributed computer 
music applications and user-interfaces. Neither the 
design or implementation of ESCI is complete; never-
theless, this description is considered essential in pre-
senting an overall view of the problem and allowing 
the reader to determine whether the current approach 
is satisfactory. The description of ESCI is broken into 
two sections � an overview of the reliability concerns 
followed by a description of the basic system architec-
ture. 
 
 

ESCI Reliability 
ESCI aims to be a straightforward framework for de-
velopers to incorporate in to existing applications. The 
distinguishing attribute is that ESCI promotes the shar-
ing of passive application structures. This is in opposi-

tion to W and OSC which share an abstraction of the 
complete application functionality through a passive 
interface. As a result, the user (and other applications) 
are no longer exploring an abstraction based on the 
expected use, but instead have access to explore the 
internals of the computer music application. 

This intention disregards a substantial amount of 
software-engineering dictum, especially with regard to 
reliability of such an open (and thus chaotic) system. 
However, the cooperative interface within ESCI will be 
as safe as the equivalent interface found within OSC. It 
is competitive and symbiotic interactions which are 
more unpredictable and better suited to the more ex-
perienced users. In fact, they should probably be hid-
den from the novice user interface (Cascone 2000). 

A semiotic interface provides a path for the user to 
become the developer. ESCI aims to enable users to 
extend the functionality of the application without ac-
cess, or modification, to the source code.  As previ-
ously mentioned maintaining a reliable base applica-
tion is difficult in the face of user contributions (Vercoe 
1996) and forking application development for special-
ist purposes is not a sustainable solution. It is expected 
that any other method trying to provide similar func-
tionality will face similar concerns. 

ESCI Architecture 
In this section a brief overview of the ESCI architecture 
will be introduced. A fundamental aspect of ESCI is 
the simplicity with which it can be incorporated into 
existing application. As a result, little or no effect on 
the flow of program control can be assumed. The long 
term ambition would be to automate the procedure of 
incorporating ESCI into an existing application. It is 
also expected that an environment such as ESCI has 
the opportunity to influence software-engineering 
techniques to be more accepting of semiotic interaction 
(especially with respect to remote access). In parallel 
with these aims, the design of ESCI is operating-
system, hardware and language independent. 

The description of ESCI is broken up into three 
parts: sharing passive representation, providing type 
information, and remote access. 

Sharing Passive Representation 
Application source code is a static description for the 
temporal behaviour of a program. As a result, the pas-
sive structures of the program provide the best oppor-
tunity to understand the dynamic behaviour of the ap-
plication at any point in time.  

OSC provides access to these structures via mes-
sage passing; however, this interrupts the flow of pro-
gram control as messages must be received and proc-
essed. An established alternative to a message passing 
system is a shared memory system.  

ESCI provides a scalable lock-free memory alloca-
tion algorithm to make interesting passive structures 
visible. This policy is similar to W (Dannenberg 1995) 
and thus ESCI is also forced to cope with the added 
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address space complexity. Existing applications are not 
effected by this, but exploration of another program�s 
address space needs to consider such issues if pointer 
types are shared (a capability not provided in OSC). 

Providing Type Information 
Although in some cases the type of a data could possi-
bly be identified through user observation and explo-
ration, ESCI provides a dynamic type system. Applica-
tions can indicate the type of a shared passive struc-
ture. Type information defines not only the form of the 
structure but also an expectation of how it should be 
used. This improves the reliability and efficiency of 
working with passive representations. 

The basic form of ESCI's dynamic type system is 
inspired by established network type definitions such 
as the External Data Representation (XDR) or the Ab-
stract Syntax Notation One's (ASN.1) Basic Encoding 
Rules (BER). Passive structures can be defined in terms 
of base types and other passive type definitions. This 
produces a hierarchy of types equivalent to those 
found in programming languages. In fact, most if not 
all of the type information can be gleaned from the ap-
plication source code. 

A more complete type system is considered a chief 
contribution of ESCI. It allows for the possibility of 
passive structures such as text-buffers, queues and 
trees to be shared. The primary user-interface for many 
applications is a textual representation with an associ-
ated syntactic interpretation (parse tree). Providing a 
method of sharing such representation would seem to 
be a required feature of any new environment. 

Remote Access 
Without modifying the flow of program control, or 
even the original source code, the task of making a 
previously local application distributed is an interest-
ing research problem. ESCI approaches the problem 
from a distributed shared memory view. 

ESCI runs a network process on each machine 
which services asynchronous messages requesting lo-
cal passive structures to be queried or assigned. This 
service is similar to that provided by OSC but not 
identical. For example, because OSC handles the mes-
sages within the application, it is possible for multiple 
objects to be set atomically. Within shared memory 
only a single memory word (such as a single integer or 
float) can generally be modified atomically. 

Furthermore, because the messages are handled 
within the application, modification of the passive rep-
resentation is easy to detect. Otherwise there is a need 
to mark the passive structure to indicate that a change 
has occurred. Again this is an established problem 
within distributed shared memory, as changes to 
shared objects need to be communicated to other ma-
chines holding a copy of that object. 

Marking the passive representation (or generating 
a message) to indicate a modification has occurred re-
quires the flow of program control to be modified. 

OSC demonstrates that as long as the modification is 
not substantial then applications are willing to incor-
porate such changes.  

OSC is also in a simpler position because messages 
represent one-to-one communication. Shared memory 
enables the possibility for multiple applications to in-
teract simultaneously providing a more developed en-
vironment for computer supported cooperative work. 
The challenge of providing an adequate marking tech-
nique is a cornerstone of the ESCI architecture. 

 

Conclusion 
The prospect of a single formalism for computer music 
representation is very unlikely to ever exist. However, 
reuse of computer music components requires some 
aspects of representation to be agreed upon. The pos-
sibility of a single interface which provides optimal 
control for computer music applications is just as 
unlikely, since every interface can bias the composer's, 
performer's and developer's view of the system. 
Within this context, issues relating to bias, reuse and 
interface representation have been explored.  

In response, the Environment for a Semiotic Con-
trol Interface (ESCI) has been introduced. ESCI inherits 
the motivation of previous systems such as W and 
Open Sound Control (OSC), and attempts to extend 
the functionality provided to computer music applica-
tion developers and users. ESCI allows the passive 
structures of applications to be explored in similar 
fashion to the OSC namespace.   A semiotic approach 
is adopted in which the cooperative interaction of OSC 
is extended by the possibility of competitive and sym-
biotic interaction. The ESCI architecture contributes 
truly passive representations, more substantial type 
information and better sharing between local and re-
mote applications. 

ESCI is an evolving environment for distributed 
user and component collaboration. As documented, a 
number of research questions remain for this project, 
and any other project attempting similar functionality. 
Nevertheless, the aim of breaking apart applications 
and making their representation visible to other com-
posers, performers and developers is considered es-
sential for facilitating the development of software 
ecologies at many levels. 
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