
ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005

Page 136

Robert Shelton
Department of Computer Science
University of Melbourne
Victoria, 3010
Australia

rshelton@cs.mu.oz.au

Bias, Reuse and Interface
Representation.

Abstract
This paper introduces the Environment for a Semiotic Con-
trol Interface (ESCI). ESCI inherits the motivation of previ-
ous systems such as W and the Open Sound Control (OSC),
while extending their functionality to enable a broader range
of type definitions and peer-to-peer collaboration. ESCI al-
lows the passive structures of applications to be explored in
similar fashion to the OSC namespace. ESCI adopts a semi-
otic approach in which the cooperative interaction of OSC is
extended through the possibility of competitive and symbi-
otic interaction.

Introduction
The chief task of a computer music user-interface is to
assist in the difficult translation of musical, intuitive
and informal ways of thinking to a formal representa-
tion (Oppenheim 1991b). Currently there is no single
target representation. Instead there exist many com-
puter music application and interface designs each
presenting their own musical ideas through the soft-
ware (Puckette 2002). As a result, every system or in-
terface tends to enforce a method of description which
then constrains or biases the composer's view (Roads
1996).

This situation is constantly improving as each evo-
lution of computer music software provides a more
powerful language, a better user interface or more ro-
bust facilities. Yet as the interface becomes more spe-
cialized, its lifetime is reduced by increased complex-
ity, cost of maintenance or an intrinsically tight bind-
ing of the code to hardware (Bernardini 2002).

The poor rate of software survival has led to a
situation in which simpler, modular and customisable
components are used in conjunction to form a more
complex system (Polfreman 1995). Examples include
single applications like CSound making use of the unit-
generator abstraction, or multiple applications cooper-
ating through established interfaces such as the Musi-
cal Instrument Digital Interface (MIDI) or OSC.

Collaboration between components has been de-
scribed as a software ecology. Furthermore, it has been
suggested that in order to move collaboration in the
field of computer music to a higher level, a system is
needed that facilitates the development of software
ecologies at many levels (Zicarelli 2002).

This paper introduces the Environment for a Semi-
otic Control Interface (ESCI) aimed at exploring the

possibility of using a semiotic control approach for
computer music. In order to observe application be-
haviour, ESCI promotes shared access to passive and
internal data structures. Although these passive struc-
tures have a formal meaning with respect to the origi-
nal application design, there is no reason that they
should not be reused in novel or creative ways. This
point of view corresponds to the idea of a performer
interpreting the formal representation of traditional
music.

�Insofar as every situation in a

musical piece may (or may not)
announce a foreseeable but unpre-
dicted musical solution, music of-
fers another example of a semiotic
system in which each situation
could be differently interpreted.�

(Eco 1976)

The next section introduces the possibility of a
range of low to high-level computer music representa-
tions. Computer music control is then introduced as a
method for interacting or collaborating at a particular
level of representation. This results in the need for in-
terface descriptions of either the passive structures or
the active methods. A semiotic approach is then con-
sidered along with the new modes of interaction it
provides. Finally an overview of ESCI is presented
with respect to reliability and architectural considera-
tions.

Computer Music Representation
When introducing a panel discussion at the 2002 Dart-
mouth Symposium on the Future of Computer Music
Software, Eric Lyon (2002) suggested that perhaps the
history of computer music languages and systems is
more or less about survival paradigms. This focus on
software survival reflects the amount of time required
for computer music systems to mature and become
accepted by the wider community.

Lyon advocated that CSound (Music-N),
Max/MSP, and SuperCollider can be considered to
represent the three surviving paradigms of computer
music. Although very different systems, it is reason-
able to suggest that all three are remarkably similar.
They all convert a visual or textual language into a
network of connected unit generators. Within CSound

pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

mailto:rshelton@cs.mu.oz.au

ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005

Page 137

this is the orchestra file, MAX/MSP uses such a net-
work as a visual interface, and the SuperCollider
Server abstracts this aspect out of the SuperCollider
client.

 It is reasonable to suggest that for any sample
produced by the synthesis algorithm, a finite function
must have been applied to generate it. The network of
unit generators provides the description for such a
function. However, this abstraction only applies for a
single sample and thus only a single instance of time.

Temporal control of the unit generator network
can be achieved using the score in CSound or an ob-
ject-oriented language similar to Smalltalk in Super-
Collider. Max uses what has been called a resource
model (Dannenberg 1991) which is different again.

All three paradigms control a network of unit gen-
erators through their own music representation. As a
result, all three are forced to provide solutions to the
associated problems such as style of description, rep-
resentation of time, hierarchy of representation and the
provision for multiple views of representation (Dan-
nenberg 1989).

The survival of these systems validates the repre-
sentation and interface adopted. The differences be-
tween them suggest that the possibility of a single rep-
resentation is very unlikely. As a result, these systems
remain isolated and provide little assistance for new
developments outside of their existing frameworks.

An interface representation which could be used
between systems is possible, but likely to provide only
the better understood subset of functionality (Open-
heim 1991a) in which novel composition is outside the
scope of the formalism (Helmuth 1996). An alternative
is to construct a single monolithic computer music ap-
plication. However, this can limit the composer when
attempting innovative or unorthodox works (Roads
1989), and hamper development given that there seems
no practical method to include every individual idea
for the reliable benefit of all (Vercoe 1996).

Within this section a single low-level representa-
tion has been suggested as well as the unlikely creation
of a single high-level representation. An environment
aiming to assist development and maintenance for new
representations or interfaces will need to find a niche
somewhere between these two extremes. The subse-
quent section argues that computer music control pro-
vides a good target level.

Computer Music Control
The variety of modes in which computer music appli-
cations are used leads to a number of possible defini-
tions of control. For the purpose of this paper, control
is defined as the correlation between the physical pa-
rameters or interface of the system and the perceptive
concepts or intention of the composer. Given this defi-
nition, control has been suggested as a major problem
for computer music applications (Oppenheim 1986).

A substantial part of this problem relates to the
volume of data required to realize music of any sub-

tlety (Loy 1989). Furthermore, the introduction of real-
time control introduces a new perspective on composi-
tion (Lefford 1999) encouraging a preference for lower
latency, higher precision and higher data rates (Wessel
2002). With this new perspective comes the need to
reconsider the traditional split of representation into
active procedures and the passive data structures that
support it (Roads 1989).

Another aspect of real-time behaviour is that con-
trol is not always a human-machine interface. Control
can also be exerted between machines using protocols
such as MIDI or OSC. This introduces the possibility of
multiple machines which in turn allows multiple users.
As a result, there is no longer a single interface, but
instead a network of, or perhaps a distributed system
for control. This promotes new possibilities for col-
laboration between composers, performers, developers
and machines.

A group and system known as The Hub (Collins
2003) provides a good example of this. Making little
distinction between the method used for composition
or performance, The Hub adopts a framework in
which a single machine is dedicated to passing mes-
sages between multiple machines. This message pass-
ing interface supports the individual contribution to
the composition or performance by allowing each
member a better understanding of the application's
distributed state.

The Hub represents a custom solution to a specific
control problem. As a result, its ability to support a
wider range of control problems is limited. MIDI is in
a similar situation (Chabot 1985). In order to generalise
the framework a method is required to describe the
interfaces provided by different components of the
computer music system.

Interface Description
The traditional split of computer music representation
into active procedures and passive data structures is
undoubtedly a result of software-engineering method-
ology � in particular object-oriented design. In this sec-
tion it is argued that traditional active interfaces, such
as the Common Object Request Broker Architecture
(CORBA), do not necessarily provide the best interface
description for computer music applications. Instead
passive interfaces such as W or the Open Sound Con-
trol (OSC) are considered better alternatives.

Traditional Active Interfaces
In line with the aims of software-engineering, the ob-
ject-oriented paradigm is designed to simplify devel-
opment, ease maintenance and hopefully improve the
possibility of component reuse. One method of achiev-
ing this is through the encapsulation of passive data
behind the object's active interface. These objects can
be organised into a hierarchy which should reflect the
structure of the applications.

ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005

Page 138

Using object-oriented techniques for computer
music representation has been a prominent approach
when trying to providing multiple views of a single
component (Roeder 1989), manipulation of application
components (Holland 1999), and representation port-
ability between different applications (Dyer 1989).
However, the success of such developments is not
clear. In fact, for a long time it has been suggested that
a �toolbox� would be more useful than a closed system
(Assayag 1986).

Some more recent developments in computer mu-
sic have adopted CORBA as such a toolbox (Behles
1996; Assayag 1996). CORBA allows an application
developer to define an active (method based) interface
within an object-oriented environment. Access to pas-
sive data can then be provided through this active in-
terface. The primary feature of CORBA is its pro-
gramming language and operating system independ-
ence. This allows it to be incorporated into almost any
style of application. Also the interface defined is then
available across the network which ties in well with
the idea that control is a problem for distributed sys-
tems.

There are also a number of negative aspects relat-
ing to the use of CORBA. As a result of its generality
and maturity, CORBA is a large and intricate system.
Learning to use it well is a difficult task and applica-
tion development becomes more complex as the origi-
nal design must take into account the requirements of
CORBA.

Since many original computer music applications
are exploratory and attempt to prove a concept, repre-
sentation or interface, it becomes unlikely that the time
investment required to adopt a CORBA framework
will be considered reasonable. Modifying proven ap-
plications to use CORBA would seem just as unlikely.
A simpler interface will have a smaller influence on the
design of a new application; furthermore, it will be
easier to incorporate into existing and proven applica-
tions. As a result, simplicity becomes a key factor in
determining the uptake of such interfaces.

Two Passive Interfaces
In opposition to the complexity of an object-oriented
paradigm, there exist two systems which demonstrate
an alternative: W (Dannenberg 1995) and OSC (Wright
1997). Both can be considered an interface to the pas-
sive components of computer music, because both are
based on the idea of assigning and retrieving values
with basic types using asynchronous messages. There-
fore, it is more a process of retrieving or setting object
values, rather than calling object methods. Of course
the act of setting values is also an event which can
trigger a return value to be sent, so in this respect
methods can be simulated within the original frame-
work.

OSC provides less overall functionality than W
and also makes few assumptions regarding flow of
program control. As a result, it is much easier to inte-

grate OSC into existing applications. This has included
CSound, Max/MSP, SuperCollider and many more
(Wright 2003).

Objects in an OSC environment are dynamically
organised into a hierarchy (namespace) which reflect
the features of the application (Wright 1998). A foreign
namespace can be explored to reveal the objects, and
their respective types, within the hierarchy. As a re-
sult, OSC enables software to be self-documenting and
transparent in its functionality (Wright 2003).

If control is the correlation between physical pa-
rameters of the system and the perceptive concepts or
intention of the user, then this ability to explore the
system's functionality becomes valuable. Exposing the
system to the user and thus providing a path for the
�user to become the developer� (Nieberle 1988) is of
significance in an environment where the original de-
veloper can not provide the functionality or represen-
tation required by all computer music users.

This mixing of roles � where the user is the com-
poser, performer and developer � creates a new situa-
tion for user-interface design. In a creative situation
where there is no limited set of tools, and also no sin-
gle way for those tools to be applied, traditional user
interface design becomes less appealing. If functional-
ity of the system is explorable and modifiable, then the
user gains a enhanced capacity to create a personalized
environment. Respective interface features can be ar-
ranged into a pattern which more adequately reflects
the user's own perspective (Todoroff 1997).

In this section active and passive interfaces were
introduced. Although it was primarily described from
a software development perspective, many of the is-
sues raised influence user-interface design and can
promote new opportunities for user control. The next
section explores the idea that these new opportunities
move the previously symbolic manipulation of com-
puter music applications, to something more semiotic.

Semiotic Control
The passive interfaces described are only of use to the
software developer. In order to control this aspect, a
human-machine interface is required. From a semiotic
standpoint, the connection between these two inter-
faces requires a �code� (Eco 1976) that apportions the
control system to the elements of the musical system
(Roeder 1989).

OSC provides the transport for this code. When
applications such as CSound, Max/MSP and Super-
Collider incorporate the OSC system, collaboration
over this transport becomes possible. However, from a
semiotic perspective the current paradigm would seem
to only support cooperative behaviour but not two
other suggested modes of interaction: competitive and
symbiotic (Iazzetta 1996).

In cooperative interaction all components of the
system share the same goals. This would seem to be
the only form of interaction currently available since

ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005

Page 139

all collaboration between components is arranged at a
global level by a standardised control mechanism. The
control provided by OSC represents an abstraction
from the complete system behaviour to a simplified
subset of functionality. Furthermore, manipulation of
that functionality is generally expressed in the terms of
the existing computer music environments.

Competitive interaction suggests a situation where
the success of one component implies the failure of
others. Symbiotic interaction suggests the existence of
different goals but the ability to share the same context
or environment. Although probably less useful than
cooperative interaction, these two can be interpreted to
represent unexpected reuse of the system or user re-
shaping of the environment. Both of these interactions
can allow the user access to normally hidden parts of
the system, the ability to separate components into
smaller parts and reinterpret the passive representa-
tion as desired.

By disrupting the traditional user-interface para-
digm, an interface based on a historically determined
representation of the problem can encourage creative
problem-solving (Traux 1986). Therefore, creative con-
trol over the environment promotes the user's ability
to imagine and implement musical processes that oth-
erwise may not be feasible (Hamman 1999).

An abstraction from the functionality can mostly
provide an expected and cooperative interaction. In
order to provide more competitive or symbiotic inter-
actions � and in turn support a semiotic environment �
the ideas of W and OSC need to be extended. In the
next section ESCI�s approach to such an extension is
introduced.

Approaching a Semiotic Environment
This section introduces ESCI (Environment for a Semi-
otic Control Interface). ESCI represent one approach to
the difficulties involved in providing the semiotic in-
teractions described in the previous section. It does not
aim to develop a user interface model, but instead ex-
ists as a code transport between distributed computer
music applications and user-interfaces. Neither the
design or implementation of ESCI is complete; never-
theless, this description is considered essential in pre-
senting an overall view of the problem and allowing
the reader to determine whether the current approach
is satisfactory. The description of ESCI is broken into
two sections � an overview of the reliability concerns
followed by a description of the basic system architec-
ture.

ESCI Reliability
ESCI aims to be a straightforward framework for de-
velopers to incorporate in to existing applications. The
distinguishing attribute is that ESCI promotes the shar-
ing of passive application structures. This is in opposi-

tion to W and OSC which share an abstraction of the
complete application functionality through a passive
interface. As a result, the user (and other applications)
are no longer exploring an abstraction based on the
expected use, but instead have access to explore the
internals of the computer music application.

This intention disregards a substantial amount of
software-engineering dictum, especially with regard to
reliability of such an open (and thus chaotic) system.
However, the cooperative interface within ESCI will be
as safe as the equivalent interface found within OSC. It
is competitive and symbiotic interactions which are
more unpredictable and better suited to the more ex-
perienced users. In fact, they should probably be hid-
den from the novice user interface (Cascone 2000).

A semiotic interface provides a path for the user to
become the developer. ESCI aims to enable users to
extend the functionality of the application without ac-
cess, or modification, to the source code. As previ-
ously mentioned maintaining a reliable base applica-
tion is difficult in the face of user contributions (Vercoe
1996) and forking application development for special-
ist purposes is not a sustainable solution. It is expected
that any other method trying to provide similar func-
tionality will face similar concerns.

ESCI Architecture
In this section a brief overview of the ESCI architecture
will be introduced. A fundamental aspect of ESCI is
the simplicity with which it can be incorporated into
existing application. As a result, little or no effect on
the flow of program control can be assumed. The long
term ambition would be to automate the procedure of
incorporating ESCI into an existing application. It is
also expected that an environment such as ESCI has
the opportunity to influence software-engineering
techniques to be more accepting of semiotic interaction
(especially with respect to remote access). In parallel
with these aims, the design of ESCI is operating-
system, hardware and language independent.

The description of ESCI is broken up into three
parts: sharing passive representation, providing type
information, and remote access.

Sharing Passive Representation
Application source code is a static description for the
temporal behaviour of a program. As a result, the pas-
sive structures of the program provide the best oppor-
tunity to understand the dynamic behaviour of the ap-
plication at any point in time.

OSC provides access to these structures via mes-
sage passing; however, this interrupts the flow of pro-
gram control as messages must be received and proc-
essed. An established alternative to a message passing
system is a shared memory system.

ESCI provides a scalable lock-free memory alloca-
tion algorithm to make interesting passive structures
visible. This policy is similar to W (Dannenberg 1995)
and thus ESCI is also forced to cope with the added

ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005

Page 140

address space complexity. Existing applications are not
effected by this, but exploration of another program�s
address space needs to consider such issues if pointer
types are shared (a capability not provided in OSC).

Providing Type Information
Although in some cases the type of a data could possi-
bly be identified through user observation and explo-
ration, ESCI provides a dynamic type system. Applica-
tions can indicate the type of a shared passive struc-
ture. Type information defines not only the form of the
structure but also an expectation of how it should be
used. This improves the reliability and efficiency of
working with passive representations.

The basic form of ESCI's dynamic type system is
inspired by established network type definitions such
as the External Data Representation (XDR) or the Ab-
stract Syntax Notation One's (ASN.1) Basic Encoding
Rules (BER). Passive structures can be defined in terms
of base types and other passive type definitions. This
produces a hierarchy of types equivalent to those
found in programming languages. In fact, most if not
all of the type information can be gleaned from the ap-
plication source code.

A more complete type system is considered a chief
contribution of ESCI. It allows for the possibility of
passive structures such as text-buffers, queues and
trees to be shared. The primary user-interface for many
applications is a textual representation with an associ-
ated syntactic interpretation (parse tree). Providing a
method of sharing such representation would seem to
be a required feature of any new environment.

Remote Access
Without modifying the flow of program control, or
even the original source code, the task of making a
previously local application distributed is an interest-
ing research problem. ESCI approaches the problem
from a distributed shared memory view.

ESCI runs a network process on each machine
which services asynchronous messages requesting lo-
cal passive structures to be queried or assigned. This
service is similar to that provided by OSC but not
identical. For example, because OSC handles the mes-
sages within the application, it is possible for multiple
objects to be set atomically. Within shared memory
only a single memory word (such as a single integer or
float) can generally be modified atomically.

Furthermore, because the messages are handled
within the application, modification of the passive rep-
resentation is easy to detect. Otherwise there is a need
to mark the passive structure to indicate that a change
has occurred. Again this is an established problem
within distributed shared memory, as changes to
shared objects need to be communicated to other ma-
chines holding a copy of that object.

Marking the passive representation (or generating
a message) to indicate a modification has occurred re-
quires the flow of program control to be modified.

OSC demonstrates that as long as the modification is
not substantial then applications are willing to incor-
porate such changes.

OSC is also in a simpler position because messages
represent one-to-one communication. Shared memory
enables the possibility for multiple applications to in-
teract simultaneously providing a more developed en-
vironment for computer supported cooperative work.
The challenge of providing an adequate marking tech-
nique is a cornerstone of the ESCI architecture.

Conclusion
The prospect of a single formalism for computer music
representation is very unlikely to ever exist. However,
reuse of computer music components requires some
aspects of representation to be agreed upon. The pos-
sibility of a single interface which provides optimal
control for computer music applications is just as
unlikely, since every interface can bias the composer's,
performer's and developer's view of the system.
Within this context, issues relating to bias, reuse and
interface representation have been explored.

In response, the Environment for a Semiotic Con-
trol Interface (ESCI) has been introduced. ESCI inherits
the motivation of previous systems such as W and
Open Sound Control (OSC), and attempts to extend
the functionality provided to computer music applica-
tion developers and users. ESCI allows the passive
structures of applications to be explored in similar
fashion to the OSC namespace. A semiotic approach
is adopted in which the cooperative interaction of OSC
is extended by the possibility of competitive and sym-
biotic interaction. The ESCI architecture contributes
truly passive representations, more substantial type
information and better sharing between local and re-
mote applications.

ESCI is an evolving environment for distributed
user and component collaboration. As documented, a
number of research questions remain for this project,
and any other project attempting similar functionality.
Nevertheless, the aim of breaking apart applications
and making their representation visible to other com-
posers, performers and developers is considered es-
sential for facilitating the development of software
ecologies at many levels.

Acknowledgment
The author would like to acknowledge the reviewer for
the insightful comments and suggestions.

References
Assayag, G. & Agon, C. 1996. �OpenMusic Architec-

ture�, Proceedings of the International Computer Mu-
sic Conference, pages 339-340, August.

Assayag, G. & Timis, D. 1986. �A ToolBox for Music
Notation�, Proceedings of the International Computer
Music Conference, pages 173-178, October.

ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005

Page 141

Behles, G. & Lundén, P. 1996. �A Distributed, Object-
Oriented Frame-work for Sound Synthesis.� Pro-
ceedings International Computer Music Conference,
pages 253-256, August.

Bernardini, N. & Rocchesso, D. 2002. �Making Sounds
with Numbers: A Tutorial on Music Software
Dedicated to Digital Audio�, Journal of New Music,
31(2):141-151.

Cascone, K. 2000. �The Aesthetics of Failure: �Post-
Digital� Tendencies in Contemporary Computer
Music�, Computer Music Journal, 24(4):12-18, Win-
ter.

Chabot, X. 1985. �User Software for Realtime Input by
a Musical Instrument�, Proceedings of the Interna-
tional Computer Music Conference, pages 19-23.

Dannenberg, R. 1989. �Music Representation Issues: A
Position Paper�, Proceedings of the International
Computer Music Conference, pages 73-75, August.

Dannenberg, R. & Rubine, D. 1995. �Toward Modular,
Portable, Real-Time Software�, Proceedings of the
International Computer Music Conference, pages 65-
72, September.

Dyer, L. 1989. �Position Paper for Music Representa-
tion Panel�, Proceedings of the International Com-
puter Music Conference, pages 98-100, August.

Eco, U. 1976, �A Theory of Semiotics�, Bompiani.
Hamman, M. 1999. �From Symbol to Semiotic: Repre-

sentation, Signification, and the Compositions of
Musical Interactions�, Journal of New Music,
28(2):90-104.

Helmuth, M. 1996. �Multidimensional Representation
of Electroacoustic Music�, Journal of New Music,
25(1):77-103.

Holland, S. & Oppenheim, D. 1999. �Direct Combina-
tion�, Proceedingsof the ACM SIGCHI Human Factors
in Computing Systems Conference, pages 262-269,
May.

Iazzetta, F. 1996. �Formalization of Computer Music
Interaction througha Semiotic Approach�, Journal
of New Music, 25(3):212-230.

Lefford, N. 1999. �An Interview with Barry Vercoe�,
Computer Music Journal, 23(4):9-17, Winter.

Loy, G. 1989. �Composing with Computers - a Survey
of Some Compositional Formalisms and Music
Programming Languages�, in Mathews, M. &
Pierce, J. editors, �Current Directions in Computer
Music Research�, chapter 21, pages 291-396. MIT
Press.

Lyon, E. 2002. �Dartmouth Symposium on the Future
of Computer Music Software:A Panel Discussion�,
Computer Music Journal, 26(4):13-30.

Wright, A. & Momeni, A. 2003. �OpenSound Control:
Stateof the Art 2003�, Proceedings of the Conference
on New Interfaces for Musical Expression, pages 153-
159.

Rohrhuber, J. Collins, N. McLean, A. & Ward, A. 2003.
�Live Coding in Laptop Performance�, Organised
Sound, 8:321-330.

Nieberle, R. Rothkamm, F. Verwiebe, M. Modler, P.
Koschorreck, S. & Kosensky, L. 1988. �The CAMP
system: An Approach for Integration of Realtime,
Distributed and Interactive Features in a Multi-
paradigm Environment�, Proceedings of the Interna-
tional Computer Music Conference, pages 250-257,
September.

Oppenheim, D. 1986. �The Need for Essential Im-
provements in the Machine-Composer Interface
used for the Compositions of Electroacoustic Com-
puter Music�, Proceedings of the International Com-
puter Music Conference, pages 443-445, October.

Oppenheim, D. 1991a. �Shadow: An Object-Oriented
Performance System for the DMIX Environment�,
Proceedings of the International Computer Music Con-
ference, pages 281-284.

Oppenheim, D. 1991b. �Towards a Better Software-
Design for Supporting Creative Musical Activity�,
Proceedings of the International Computer Music Con-
ference, pages 380-387.

Polfreman, R. & Sapsford-Francis, J. 1995. �A Human
Factors Approach to Computer Music System
User-Interface Design�, Proceedings of the Interna-
tional Computer Music Conference, pages 381-398,
September.

Puckette, M. 2002. �Max at Seventeen�, Computer Mu-
sic Journal, 26(4):31-43,Winter.

Roads, C. 1989. �Active Music Representation�, Pro-
ceedings of the International Computer Music Confer-
ence, pages 257-259, August.

Roads, C. 1996. �The Computer Music Tutorial�, MIT
Press.

Roeder, J. & Hamel, K. 1989. �A General-Purpose Ob-
ject-Oriented System for Musical Graphics�, Pro-
ceedings of the International Computer Music Confer-
ence, pages 260-263, August.

Neuendorffer, R. Dannenberg, R. & Rubine, D. 1991.
�The Resource-Instance Model of Music Represen-
tation�, Proceedings of the International Computer
Music Conference, pages 428-432.

Todoroff, T. Traube, C. & Ledent, J. 1997. �NeXTSTEP
Graphical Interface to Control Sound Processing
and Spatialization Instruments�, Proceedings of the
International Computer Music Conference, pages 325-
328, October.

Truax, B. 1986. �Computer Music Language Design
and the Composing Process�, in Emmerson, S. edi-
tor, �The Language of Electroacoustic Music�, Chap-
ter 8, pages 155-173. MIT Press.

Vercoe, B. 1996. �Extended Csound�, Proceedings of the
International Computer Music Conference, pages 141-
142, August.

Wessel, D. & Wright, M. 2002. �Problems And Pros-
pects For Intimate Musical Control Of Com-
puters�, Computer Music Journal, 26(3):11-22.

Wright, M. 1998. �Implementation and Performance
Issues with OpenSound Control�, Proceedings of the

ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005

Page 142

International Computer Music Conference, pages 224-
227, October 1998.

Wright, M. & Freed, A. 1997. �OpenSound Control: A
New Protocol for Communicating with Sound
Synthesizers�, Proceedings of the International Com-
puter Music Conference, pages 101-104, October
1997.

Zicarelli, D. 2002. �How I Learned To Love a Program
That Does Nothing�. Computer Music Journal,
26(4):44-51, Winter.

