
ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005

Page 149

Andrew Sorensen
MOSO Corporation
15/925 Brunswick St
New Farm, 5004
Australia
andrew@moso.com.au

Impromptu: An interac-
tive programming envi-
ronment for composition
and performance.

Abstract

Interactive development environments are making a resur-
gence. The traditional batch style of programming, edit ->
compile -> run, is slowly being reevaluated by the develop-
ment community at large. Languages such as Perl, Python
and Ruby are at the heart of a new programming culture
commonly described as extreme, agile or dynamic. Musi-
cians are also beginning to embrace these environments and
to investigate the opportunity to use dynamic programming
tools in live performance. This paper provides an introduc-
tion to Impromptu, a new interactive development environ-
ment for musicians and sound artists.

Introduction

Impromptu is a new programming environment being
developed to explore the manipulation of musical
structure in live performance. Live, real-time or on-
the-fly programming is a performance paradigm
stemming from laptop performance, but with an em-
phasis on the crafting of algorithms in real-time. Im-
promptu is designed to provide a dynamic, real-time,
interpreted, multi-user runtime capable of supporting
the creation, modification, distribution and evaluation
of source code in live performance. Impromptu con-
sists of a synthesis/DSP engine, a real-time scheduling
engine, a Scheme interpreter and an Integrated Devel-
opment Environment.

Live Programming

The use of computers in the creative proc-
ess mandates that we think of communica-
tive and creative processes in terms of ab-
stract structures and the manipulation of
such structures. (Holtzman 1994)

Live Programming is a performance practice that em-
phasizes the creation and manipulation of algorithms
in real-time. Live Programming emphasizes the cere-
bral nature of algorithmic development and mandates
that this process should be transparent and accessible.
�Give us access to the performer's mind, to the whole
human instrument.� (www.toplap.org)
 Live Programming offers a novel opportunity
for audience members to participate in the creation of
a work as it unfolds; an exciting medium allowing au-
dience members to intellectually grasp the structures

and abstractions of a work even before it has been ren-
dered sonically. And perhaps even more important is
the opportunity for performers to connect with each
other, freely exchanging ideas of both micro and macro
structure. Additionally, there is a performance prac-
tice, a level of virtuosity evident in Live Programming
that will hopefully provide a stage presence that has
often been missing in live laptop performance. Above
all, the author hopes that this interactive medium for
music making will provide an environment for the
novel exploration of structure through abstraction and
combination, the building blocks of digital art.

A Brief History
The first documented Live Programming performance
was at a concert performed by Ron Kuivila at STEIM
in 1985. Ron used his Formula programming language
(A language based on Forth) for this half hour per-
formance. Forth and Lisp systems were used for vari-
ous real-time performances during the late 80s and
early 90s. The League of Automatic Composers (later
becoming the Hub) were a performance group that
made use of real-time programming methods in live
performance, encouraging audience members to walk
between performers in order to see the code being cre-
ated and executed during the performance. (Gresham
1998).
 With the exception of small pockets of activity
live coding seems to have been largely absent during
the 90s. Live Programming during this period appears
to have been restricted to the runtime manipulation of
signal paths in Max patches.
 A resurgence in the use of text based lan-
guages for Live Programming can be dated to 2000 and
Julian Rohrhuber�s real-time Supercollider experi-
ments. Other important work at this time was Alex
McCleans work with SLUB and Adrian Ward�s REAL-
basic environment �Pure Events� (Collins et al 2003).
 Recently Live Programming has been given a
broader treatment due to the attentions of computer
music luminary Perry Cook. Ge Wang and Perry Cook
have developed a new programming language specifi-
cally tailored for on-the-fly creation of DSP algorithms.
The language ChucK provides novel concepts such as
the ability to embed time primitives directly into the
program flow (Wang and Cook 2003).

pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

mailto:andrew@moso.com.au

ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005

Page 150

Supercollider, having always been at the forefront of
this field is playing an ever-increasing role in Live Pro-
gramming. The success of the now open source SC3
server has seen a proliferation of client architectures
making use of the successful OSC communication pro-
tocol. There are SC3 clients available for many lan-
guages including Java, Scheme, Ruby and the more
traditional SCLang. Many of these environments sup-
port Live Programming.

Impromptu

Impromptu is an interactive development environment
being built by the author. Impromptu has been de-
signed to provide an interactive environment for the
exploration of real-time musical algorithm crafting and
performance.
 Impromptu is designed to support multiple
users operating within a shared runtime environment.
Impromptu also includes an Integrated Development
Environment (IDE) designed for both live and non-live
programming.
 Impromptu emerged at the juncture of three
separate paths: (1) an interest in dynamic languages
and interactive development environments (2) a desire
to explore programming as a live performance tool
and (3) the development of AiME, a new C++ synthe-
sis/scheduling engine. The result of this merger is the
close coupling of a high-level language runtime,
Scheme, and a synthesis/scheduling engine, AiME.

AiME
AiME has been developed over the past 12 months by
the author with support from the Australian CRC for
Interaction Design (ACID) dynamic content project.
The engine has been designed to provide a vehicle for

exploring dynamic content creation and delivery. The
AiME engine is based around a simple, flexible real-
time scheduling engine providing sample accurate
callbacks to C++ methods. AiME does not implement
a control-rate, instead allowing scheduled callbacks to
effect signal processing units at any frame boundary.
Although this approach has inherent performance pen-
alties the relative simplicity of the architecture and an
ever-increasing supply of gigahertz make this a mu-
sically and architecturally satisfying solution.
 Inter-object communication is made through
the central scheduling engine promoting a high degree
of temporal control across all aspects of the engine.
This convention applies equally to both synthesis/DSP
units and event/control structures.
 AiME includes a growing array of synthesis
instruments including a flexible STK wrapper that al-
lows STK generators, filters, effects and instruments to
be chained at runtime (Cook & Scavone 1999). AiME
provides extensive parametric control of all sound
sources through the scheduler.
 The AiME library has been designed to inte-
grate directly into 3rd party applications. AiME�s pri-
mary design consideration was non-linear environ-
ments, and more particularly computer game engines.
This design goal influenced the expectoration that a
scripting language or other real-time mechanism
would be used to control AiME. This design made it
an obvious candidate for coupling with a high-level
language such as Scheme.
 AiME is a BSD licensed project hosted at
http://sourceforge.net/projects/aime-lib.

Figure 18: The Impromptu Integrated Development Environment.

http://sourceforge.net/projects/aime-lib.

ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005

Page 151

Scheme
Scheme is a dialect of Lisp, a dynamic language de-
signed by John McCarthy in 1958. Scheme is a small,
elegant yet powerful language developed by Gerald
Sussman and Guy Lewis Steel at MIT in the late 1970�s
(Abelson & Sussman 1996).
 Impromptu uses a modified scheme inter-
preter based on TinyScheme (Souflis). The interpreter
is written in C and is integrated directly into the AiME
engine. Communication between the Scheme runtime
and the AiME engine happens through a combination
of Scheme/C bindings and Scheme opcodes. These
integration points provide Scheme with �native� ac-
cess to the AiME scheduling engine, and therefore to
any C++ method available to the scheduling engine. In
effect this gives the scheme engine complete access to
AiME C++ objects at runtime. This integration is
transparent to Impromptu programmers who should
be unaware of any distinction between scheme ->
scheme calls and scheme -> C++ calls.
 The Impromptu scheme interpreter currently
supports most of the scheme RSR5 standard (Abelson,
H. etal 1998) including macro support. While RSR5
only includes a tiny standard library there is vast array
of public domain Scheme code readily available for use
in Impromptu. Most of this RSR5 compatible code
should evaluate in Impromptu with little or no modifi-
cation.

Function Scheduling
One of Scheme�s most powerful language features
(now common in many dynamic languages) is its sup-
port for first class functions. First class functions can
be sent as arguments to functions and returned from
functions but more importantly, support for first class
functions means that functions can be created at run-
time.
 Impromptu enhances this feature by allowing
programmers to schedule function evaluation at run-
time. The ability to create new functions at runtime
and to precisely schedule their execution gives pro-
grammer-performers a powerful environment for ex-
ploring musical abstractions. To demonstrate this in
practice a common technique utilising scheduled
Scheme function callbacks is to write quasi-recursive
functions that constantly resubmit themselves to the
scheduling engine with a time increment.

(define (play)
 ; play C4 every 4 seconds
 (play-note (now) *inst* 60)
 (callback (time++ 4.0) 'play))

All time synchronisation in Impromptu is handled on
the server. In fact there is no client/server synchroni-
zation in Impromptu. Impromptu clients do not exe-
cute any code, instead passing all expressions to the
server for evaluation. This conveniently removes the
jitter problems commonly associated with other Live

Programming environments. Execution time however,
must still be considered when working with Im-
promptu�s Scheme callback architecture. This is gener-
ally not a major issue however as it should be rela-
tively intuitive to the real-time programmer that code
evaluation is not instantaneous and it is a relatively
trivial matter to circumvent the problem by scheduling
callbacks ahead of time.

(define (long-function T)
 ; schedule callback 4100 frames
 ; ahead of desired sounding time.
 (generate-and-play-100-notes T)
 (callback (+ T 40000)
 'long-function
 (+ T 44100))

This code shows an example of calling back ahead of
time. The example sets the callback 4100 frames ahead
of the desired sounding time. This gives the inter-
preter 4100 frames in which to evaluate the function
(generate-and-play-100-notes <scheduled time>) that
internally schedules all 100 notes for evaluation at
<scheduled time>. In reality many operations do not
need to worry about timing issues this accurately and
are free to call Impromptu�s (now) function, which
returns the audio engines current frame. It is important
though to remember that precise scheduling is possible
if required.

Multi-User Runtime
Another of Scheme�s powerful features is the ability to
create and bind new symbols at runtime. Symbols are
the names given to abstractions. They are the map-
pings that allow the production of combinations of
ever-greater complexity. Scheme allows users to re-
bind existing symbols to new objects (combinations) at
runtime. The ability to remap objects at runtime is an
extremely powerful technique.
 The simple example below demonstrates a
powerful Live Programming technique, the ability to
rapidly change mappings at runtime. In this example
our looping melody will instantly change as soon as
we evaluate the final line.

;start by defining a list of pitches
(define melody '(64 62 60 62))

;next make a quasi-recursive callback
;to loop the melody
(define (loop-melody)
 (play-notes (now) *inst* melody)
 (callback (time++ 4.0)
 'loop-melody))

;start the quasi-recursive function
(loop-melody)

;rebind melody to something new
(define melody '(64 64 64))

Impromptu significantly enhances this feature by al-
lowing multiple users to share a single networked run-
time environment providing any number of collabora-

ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005

Page 152

tors with simultaneous access to a shared symbol pool.
The ability for multiple users to access a shared run-
time offers them the opportunity to create, modify and
extend the ideas of collaborators in a highly interactive
environment enhancing both creativity and fun. And
users need not be human.
 A common operation using symbol binding
and a shared runtime is for one user to replace another
users running code. A simple example will help to
identify why these two features combine to form a
compelling new musical performance tool. Jack binds a
function that plays a major scale to the symbol scale
and sets a callback to itself +1 seconds from now.

(define (scale)
 ; Jacks major function
 (play-scale (now) 60 72 'major)
 (callback (time++ 1.0) 'scale))

Jack then needs to call his newly bound function in
order to begin it�s execution. The result is a major
scale that begins playing every second.

(scale)

Jill, who has a connection to the same Impromptu run-
time as Jack decides to replace Jack�s major scale with
a minor scale. Jill now binds a new function to the
symbol scale (the same symbol that Jack used) which
plays a minor scale and sets a callback to itself +2 sec-
onds from now.

(define (scale)
 ; Jills minor function
 (play-scale (now) 60 72 'minor)
 (callback (time++ 2.0) 'scale))

The next time the scale function is called from the
scheduler Jill�s minor scale implementation will be
called having replaced Jack�s implementation. Notice
that Jill never explicitly calls (scale). She does not need
to as the scheduling engine is already scheduled to
evaluate a function bound to the symbol scale, regard-
less of what that function might be. The transfer be-
tween Jack�s function and Jill�s function is seamless.
Jack is of course perfectly at liberty to change scale
back again if he does not agree with Jill�s aesthetic
choice.
 The ability to rebind symbols and the ability to
create first class functions are two key Live Program-
ming concepts. These runtime facilities provide real-
time programmers with a highly expressive environ-
ment for manipulating abstractions and combinations
in live performance. The consequences for a multi-
performer runtime

Future Work

Impromptu development is currently progressing at a
rapid pace. Areas of current development include, an
IDE for OSX, additional instrument and ugen devel-

opment and a growing library of Scheme music and
ALife/AI functions.
 Three areas of future development that would
greatly enhance the project would be a Scheme com-
piler, for more efficient run-time performance, an inte-
grated threading mechanism for the Scheme inter-
preter and the addition of intelligent agents.
 Intelligent agents offer the opportunity for
human users to collaborate with artificial agents in a
collaborative partnership. Genetic programming in
particular provides interesting and novel opportunities
for runtime creation and manipulation of code. In the
future Jack and Jill�s functions may produce whole
new offspring, the combination of their genetic
makeup. Intelligent codebots modifying and extending
code at runtime is an interesting area of research not
just for artistic practice but also for programming at
large.
 One of the author�s primary interests is struc-
ture, particularly the ways in which computer pro-
grams can be used to provide new insights or tech-
niques into its composition and decomposition. Im-
promptu was developed primarily to supply the au-
thor with a tool that could be used to more readily ex-
plore these structures in real-time. Future work will
continue to expand Impromptu in directions that help
to shed further light on the abstractions and combina-
tions that convolve to produce interesting art.

Conclusion

Live Programming provides an exciting and novel de-
parture from traditional musical performance. The
ability to improvise both micro and macro abstractions
and to manipulate combinations of any kind provides
Live Programmers with an opportunity to explore new
avenues of musical collaboration and improvisation.
Audiences will benefit not only from new sonic experi-
ences but also through a new level of intellectual in-
volvement that is made possible by the explicit repre-
sentation of ideas described in source code.
 However, Live Programming is in its infancy
and there is a much work to be done. Like all great
performance art, virtuosic Live Programming will be
an immensely difficult skill to attain, requiring time,
dedication and talent. I hope that this new perform-
ance practice has the ability to survive and flourish to
the point where it sees it�s first true virtuoso.

References

Abelson, H., Sussman, G., Sussman, J. 1996. Structure
and Interpretation of Computer Programs Cambridge,
MA: MIT Press

Abelson, H etal, 1998 �Revised Report on the Algo-
rithmic Language Scheme�

Collins, N., McLean, A., Rohrhuber, J., Ward, A. 2003
�Live coding in laptop performance�, Organised
Sound 8(3), 321-330

ACMC05 Generate and Test: Proceedings of the Australasian Computer Music Conference 2005

Page 153

Cook, P., Wang, G, 2003 �ChucK: A Concurrent, On-
the-fly , Audio Programming Language�, In pro-
ceedins of the 2003 International Computer Music Con-
ference.

Cook, P., Wang, G. 2004 �On-the-fly Programming:
Using Code as an Expressive Musical Instrument�,
In Proceedings of the 2004 International Conference on
New Interfaces for Musical Expression.

Gresham, L. 1998 �The Aesthetics and History of the
Hub: The Effects of Changing Technology on
Network Computer Music�; Leonardo Music Jour-
nal Vol8, 39-44

Holtzman, S. 1994. Digital Mantras: The Lanuages of Ab-
stract and Virtual Worlds, MA: MIT Press

McCartney, J. 2002. �Rethinking the Computer Music
Language: SuperCollider�, Computer Music Journal
26:4, 61-68

Mclean, A. 2004. �Hacking Perl in Nightclubs�
http://www.perl.com/pub/a/2004/08/31/liveco
de.html

Norvig, P. 1992. Paradigms of Artificial Intelligence Pro-
gramming: Case Studies in Common Lisp, San Fran-
cisco CA: Morgan Kaufmann.

Souflis, D. �TinyScheme�
http://tinyscheme.sourceforge.net/

TOPLAP http://www.toplap.org
Wang, G and Cook, P. 2003. �ChucK: A concurrent,

on-the-fly audio programming language.� Proced-
dings of the International Computer Music Con-
ference, Singapore.

http://www.perl.com/pub/a/2004/08/31/liveco
http://tinyscheme.sourceforge.net/
http://www.toplap.org

