

Anna Gerber and
Andrew R. Brown
Music and Sound
Queensland University of Technology
Kelvin Grove, 4059
Australia
a.gerber@qut.edu.au
a.brown@qut.edu.au

Visualising Music with
Impromptu

Abstract
This paper discusses our experiments with a method of
creating visual representations of music using a graphi-
cal library for Impromptu that emulates and builds on
Logo’s turtle graphics. We explore the potential and
limitations of this library for visualising music, and
demonstrate some ways in which this simple system can
be utilised to assist the musician by revealing musical
structure.

Introduction
“Rhythm, meter, frequency, tonality and in-
tensity are the periodic parameters of music.
There is a similar group of parameters that
set forth a picture domain as valid and fertile
as the counterpoised domain of sound. This
visual domain is defined by parameters
which are also periodic. ‘Computational pe-
riodics’ then is a new term which is needed
to identify and distinguish this multidimen-
sional art of eye and ear that resides exclu-
sively within computer technology.” (Wit-
ney 1980:210)

Music occupies time and space, and visualisations can
assist the composer by revealing the organisation of
music by mapping sonic space to Cartesian space. In this
paper we share the results of some explorations into visu-
alising music using simple graphic techniques, with a
view to building up a toolkit for assisting with the cre-
ation and analysis of music. Inspired by pioneers such as
John Witney we pursue visual correlations to musical
patterns and form but, unlike Witney, we do so not
purely to the ends of visual aesthetics but to provide
visualisation tools to assist composers. In this regard our
intentions are similar to those of Seymour Papert who
used the Logo computer graphics language to assist chil-
dren to understand mathematical principles, in particular
geometry, through animated visualisations.

Background
There is a rich history of music visualisations for the pur-
pose of composing, dating back at least to early notation
systems using neumes. In many ways these methods of
visually notating music have become more specific, with
waveforms on oscilloscopes and computer screens being
perhaps the most directly detailed, to the very generalised

use of arcs and shapes as representations of musical ges-
tures and sound objects. There is not the space here to
cover this territory, the interested reader is referred to Mi-
ell et al. (2005), however, we will spend some time de-
marcating the areas of visualisations that do concern this
research and, in particular, some of the history of Logo
turtle graphic visualisations.

Music Visualisation

There are a number of uses for visualisations in music, so
to avoid confusion it is important to be clear about what
we are not concerned with in this paper. There is a con-
siderable amount of research involving the visualization of
timbre, from oscilloscopes to spectrograms. While we
might be inspired by some of the techniques used in this
work, our focus in on compositional structure typically
understood as the organisation of musical note or sonic
objects over time. Due to the exploratory nature of this
project, we have focused solely on note-based music,
however we anticipate that these visualisation techniques
could be extended to apply to other compositional struc-
tures.

There is also a large interest in graphical animations
that are driven by music, as found in most mp3 players
and the like. In general the correlation between music and
sound in these systems is too abstract to be of analytical
use to the composer, which is the focus of the visualiza-
tion strategies of interest to us in this paper. Finally, we
are also little interested in the field of synaesthesia, which
examines links between the sensation of sound and col-
our. Whilst, we are concerned with mapping musical
attributes to visual cues, which may include colour, we
make no claim that these mappings have any instinsic
perceptual or cognitive significance.

Logo and Turtle Graphics for Music

We chose to focus on the Logo language’s turtle graphics
as a means for music visualisation because this language
had been designed with ease of use for non-computer-
programmers in mind, and because of previous successes
in using turtle graphics for exploration of spatio-temporal
concepts within the domain of mathematics. A signifi-
cant source of inspiration for our investigation was the
work of Seymour Papert (1980) and others in developing
Logo to assist with the understanding of geometry
through visualisation (and embodiment). Our goal was
to explore whether an implementation of functions pro-
vided by turtle graphics within a musical environment
could provide useful abstractions to musicians wishing to

map musical concepts to spatial and temporal concepts
used in visualisations.

To this end we developed a Logo implementation in
Impromptu (Sorensen 2005) and some results of our ex-
periments in this environment are described below.
Whilst easy to access, we soon found the simple path
tracing processes of Logo somewhat restrictive and added
other drawing processes to our visualisation toolkit,
whilst trying to maintain the features of elements of sim-
plicity and accessibility.

It is useful to consider some of the other attempts to
utilise the ideas of Logo for music creation, in particular
the work of Jeanne Bamberger (1974), Desain and Hon-
ing (1988), Mike Guzdial (1991) and Gregory Gargarian
(1996). Many of these attempts focused on providing
musical building blocks for the assembling of compo-
sitions, however our approach is generally to do the in-
verse and to draw images with the graphics library that
reveal structural attributes of music and thus be an aid to
the musician when creating music.

Turtle Graphics for Impromptu
Impromptu is an interactive programming environment
created by Andrew Sorensen (2005), utilising the Scheme
programming language, and has been designed for live
programming performance of music and graphics.

We created a library of turtle graphics primitives by
building on top of Impromptu’s core graphics (Quartz)
functions. The primitives that we implemented included:

• penup : start drawing a trail behind the turtle
• pendown : stop drawing a trail behind the turtle
• setbg : set background colour
• setpc : set pen colour
• forward : move forward by a number of steps
• back : move backwards by a number of steps
• left : turn left by a number of degrees
• right : turn right by a number of degrees
• setpos : move to a specific co-ordinate location
• seth : set turtle direction using absolute angle
• home : return to origin
• clear : clear screen and return to origin

Because of differences between Logo and Scheme, the
code for drawing graphics using the turtle graphics library
for Impromptu or with Logo turtle graphics is not identi-
cal. Mostly the variation is due to syntax and differences
between the semantics of iteration and termination in
Scheme and Logo. For example, use of infinite recursion
and a control key sequence to terminate the recursion is
possible in Logo, but this would not be considered to be
well-formed in Scheme. However, the basic turtle func-
tions such as moving, changing heading and position,
and pen operations have the same parameters and demon-
strate the same graphical results.

To illustrate these differences, Figure 1 shows an ex-
ample of Apple Logo (Ableson, 1982) syntax for defining
a procedure called triangle, which takes a single parameter
called size, while Figure 2 shows the equivalent code
using the turtle graphics library for Impromptu. In Figure
2, (define triangle (lambda (size) …)) can
be considered to be equivalent to the first and third lines
of Figure 1, while (dotimes (i 3) (begin can be
considered to be equivalent to REPEAT 3.

TO TRIANGLE :SIZE
REPEAT 3 [FORWARD :SIZE LEFT 120]
END

Figure 1. Apple Logo procedure to draw a triangle

(define triangle
 (lambda (size)
 (dotimes (i 3) (begin
 (forward size)
 (left 120))))

Figure 2. Impromptu code for drawing a triangle

Examples
Using this set of turtle graphics primitives, we experi-
mented with creating simple visualisations that used
paths, shape, colour, line thickness, and transparency to
focus on particular musical attributes.

Using the library functions, we constructed a path to
represent the melodic contour of a monophonic part. We
implemented a draw-note function to create a path rep-
resenting the melodic contour. The code for this function
is shown in Figure 3.

(define cx 0)
(define cy 0)
(define offset 50)
(define draw-note
 (lambda (time p d r)
 (set! cx (+ cx (/ d 50)))
 (set! cy (- p offset))
 (setpos cx cy)))

Figure 3. Code to draw melodic contours

Whenever a note was played, a section was added to
the path by calling draw-note, as shown in Figure 4.
The play-note function includes the pitch, dynamic
(volume) and rhythm (duration) as parameters. The
draw-note function was called with the same param-
eters. In this example, the pitch of the note determined
vertical distance between path segments, while the dur-
ation of the note determined the horizontal distance.

(play-note time inst p d r)
(draw-note time p d r)

Figure 4. Code for calling the draw-note function

The results of running this visualisation on random
generated notes can be seen in Figure 5, while the same
visualisation code run with the first part of Bach’s Little
Fugue in G minor is shown in Figure 6.

Figure 5. Melodic contour (random notes)

Figure 6. Melodic contour (Bach Fugue part)

By modifying the draw-note function, we experi-

mented with different visualisations of each note based on
pitch, dynamics and duration. The visualisation code
shown in Figure 7 is based on note pitch and dynamics,
and result of running the code on random note input is
shown in Figure 8.

(define range-size 60) ; pitch range
(define (draw-note time p d r)
 (penup)
 (seth (* range-size p))
 (forward 20)
 (pendown)
 (triangle (* 2 d))
 (penup)
 (home)))

Figure 7. Code for visualising dynamics

Figure 8. Dynamics visualisation

In this example, the pitch was represented by a posi-
tion in Cartesian space, determined by segmenting the
360 degrees in a circle around the turtle origin so that
each note in the pitch range of the randomly generated
note content was represented by a particular angle within
this circle. For each note, a shape was drawn in the posi-
tion corresponding to the pitch, with the size of the shape
representing the note’s loudness; the smaller the shape,
the louder the note.

The visualisations don’t have to be based only on
absolute values such as a note’s pitch, duration or dy-
namics. In the visualisation code shown in Figure 9, the
intervallic relationship between notes is used instead.

(define *pcrgb* '(0.5 0.0 0.5))
(define prev lower)
(define (draw-note time p d r)

(left d)
(setpc (append *pcrgb*

 (make-list 1 (/ 25.0 d)))
(forward (* 2 (abs (- p prev))))
(set! prev p))))

Figure 9. Code for drawing intervals & dynamics patterns.

Dynamics are represented by varying the alpha trans-
parency of the colour used to draw the lines, and by the
relative angle of each path segment from the previous one.
The pitch intervals correspond to the lengths of the line
segments. Figures 10 – 12 show the results of running
this visualisation over different types of music. Figure 10
is based on randomly generated notes, Figure 11 is based
on a looped sequence of generated notes, and Figure 12 is
based on Bach’s Little Fugue in G minor.

For this example, we stepped outside of the original
behaviour of Logo turtle graphics to use features of Im-
promptu that allow custom colours (based on red, green,
blue and alpha transparency values) to be defined in order
to use colour to help with identifying patterns in the visu-
alisation. In the first two examples, the colour is changed
over time to indicate the temporal progression of the
visualisation. In the looped example, a new colour is
generated each time through the loop. For the Fugue,
each colour represents a different voice of the Fugue.

Figure 10. Random notes interval path

Figure 11. Looped pattern interval path

Figure 12. Bach Fugue interval path

In Figures 11 and 12, patterns in the visualisation
can be identified. In Figure 11, each iteration through the
loop results in the same shape being drawn. A regular,
circular visualisation is produced because these shapes are
being drawn in sequence, offset by the same angle.

In the Fugue, similar patterns are easy to spot visu-
ally, indicating where imitation occurs in different voices
of the fugue. Because the interval sequence and dynamics
are almost identical, the visual representation is also al-
most the same for the Fugue subject in the tonic key and
for answers in the dominant key. Other features that are
easily identified in this visualisation are periods of trill,
identified by tight, dark circles.

Although all of the visualisations shown so far were
based around single notes, visualisation functions are
easily created at different levels of granularity or to visu-
alise different aspects of a piece by modifying the param-
eters to the visualisation function. Figure 13 shows code
for visualising chords.

(define draw-chord
 (lambda (time p p2 p3 p4 p5 d r)
 (penup)
 (set! cx (+ cx 10))
 (setpos cx cy)
 (pendown)
 (draw-shape p p2 p3 p4 p5)))
(define draw-shape
 (lambda (p p2 p3 p4 p5)
 (setpc (make-list 4 (lambda (i)
 (random))))
 (seth 0)
 (forward 15)
 (left (* 10 (- p p2)))
 (forward 15)
 (left (* 10 (- p2 p3)))
 (forward 15)
 (left (* 10 (- p3 p4)))
 (forward 15)
 (left (* 10 (- p4 p5)))
 (setpos cx cy)))

Figure 13. Triad visualisation code

The draw-chord visualisation function is called
when the notes of the chord are played. The draw-shape
function uses the pitch values of the notes of the chord to
draw polygons with the number of sides equal to the
number of notes in the chord. The angles are based on the
distances between the pitches in the chord. Each chord is
drawn in a random colour. The results of applying the
chord visualisation are shown in Figure 14, for randomly
generated triads.

Figure 14. Triad visualisation

Applying the draw-chord function to a keyboard
‘comping performance of John Coltrane’s Giant Steps
produces the output shown in figure 15. The irregularities
of the dense jazz voicings produced a correspondingly
diverse visual appearance.

Figure 15. Giant Steps chord sequence

Discussion
It is possible to create many different visualisations using
the library, however over the course of our experimenta-
tion, most of the visualisations that we created fell into
the following categories:

• Graph-like paths such as the melodic contour exam-

ple from Figures 3 - 6, where the x and y position of
each path segment is based on musical attributes.

• Relative paths, where the length and angle of the next
path segment is determined by musical attributes.
The interval examples shown in Figures 9 - 12 are
examples of this kind of visualisation. In the presence
of repeated patterns or loops, the result of this type of
visualisation can be visually similar to the patterns
drawn by a spirograph toy.

• Stamp-based visualisations, where a template func-
tion (the “stamp”) is parameterised with the attribute
being visualised to determine the position, size, col-
our and even the shape of the stamp. The dynamics
example shown in Figures 7 and 8 and the chord ex-
ample in Figures 13 and 14 are examples of this style
of visualisation.

Because turtle graphics is a predominately path-based
graphical paradigm, the library that we implemented is
best suited to music visualisations based on continuous
paths. Multiple paths can be constructed to represent po-
lyphony or different views or aspects of a single part.
Both the graph-like and relative path styles of visualisa-
tions are based on paths, with the difference being that the
graph-like visualisations are based on absolute position-
ing to construct the path segments, while the spirograph-
like visualisations use relative angles and distances.

Our explorations revealed that our library has poten-
tial in creating the kinds of visualisation described above.
However, it was also clear that there are many other map-
pings from musical compositional structures to cartesian
space that are not easily implemented using the path-
tracing approach afforded by Logo’s turtle graphics. For
other types of visualisation, such as those that make use
of many discrete visual objects, using our turtle graphics
library was a hindrance as it was more intuitive to im-
plement such visualisations in the underlying graphics
functions provided by Impromptu.

Remaining strictly within the bounds of existing
Logo turtle graphics functionality limits the possible
visualisations that can be created with the library. Hence,
we plan to build future libraries directly on top of Im-
promptu’s core graphics functions rather than on top of
turtle graphics.

Drawing isolated shapes and separate paths at abso-
lute positions such as those used in the stamp-based style
visualisations can be cumbersome using the turtle graph-
ics library. Turtle graphics requires a penup, setpos,
and pendown prior to drawing a disconnected shape or
path. For drawing basic shapes, the code may be clearer,
and would be more efficient if the functions were based
directly on Impromptu’s native functions, rather than
implemented using turtle graphics.

Even for path-based visualisation, Impromptu’s
built-in core graphics functions can be used to augment
the visualisation with functionality outside of that pro-
vided by traditional turtle graphics such as changing the
thickness of the path, using alpha transparency and cus-
tom colours beyond the traditional pallet of seven. In the
examples presented in this paper, we have already moved
beyond the capabilities of Logo turtle graphics in terms of
defining custom colours.

The figures in this paper provide static pictures of the
final result of running the visualisation functions over a
period of time. We’ve shown the entire visualisation,
however patterns would be clearer to the observer while
watching the visualisation unfold over time when older
graphics are faded out or erased over time. This fading can
be achieved by periodically washing the canvas using a
semi-transparent cleared image in the same colour as the
background. Impromptu includes create-image,
clear-image and draw-image functions that can be
used to add to wash functionality to our library. It is also
possible to set the animation rate of drawing using Im-
promptu’s facility to schedule functions using the call-
back command. This allows for temporal structures to
unfold over time at a speed specified by the code author,
or to be synchronised with music playback.

Visualisations often creep off the screen as the current
position of the path or turtle progresses over time. This
could be mitigated by writing smarter visualisations,
however a better approach would be to provide functions
in the library that encode common strategies for dealing
with this problem, for example, when the turtle hits the
bounds, to bounce it back into the canvas like a ball
bouncing off a wall or to shift it back to the centre of the
drawing canvas.

Currently, we are extending the library by adding ad-
ditional abstractions over the primitive visualisation func-
tions provided by Impromptu and the turtle graphics li-
brary, including functions for simple shapes such as tri-
angle, circle, rectangle etc and wrappers for other core
graphics functions using relative distances, angles and
points, in the same way that turtle graphics uses relative
distances and angles for path construction.

Future directions for the library include adding more
music-specific functions allowing composers to parameter-
ise the basic shape functions using musical attributes such
as pitch, duration, dynamics, timbre etc and to parameter-
ise relative visualisation functions based on musical rela-
tionships.

Conclusions
We have shown that even with a simple set of graphical
elements (line, angle, triangle and colour) some useful
visualisations of musical structure can be achieved. We
have also limited ourselves to two-dimensional represen-
tations at this stage. With the additional graphic elements
and the utilisation of three-dimensional space we believe
that some quite complex yet informative visualisations
will be possible. The interactive philosophy of Logo pro-
gramming and the real-time abilities of the Impromptu
environment allow this approach to visualisation to be-
come a fluid addition to the computer musician’s creative
toolkit.

While our work reported here has been deliberately
limited to turtle graphic functions in order to test the
possibilities of a limited visual repertoire, our future re-
search will extend the library by removing limitations
such as the requirement for a continuous drawing path and
maintenance of a single “turtle” position. We are also
interested to explore issues of interaction design and
usability to see how musicians may incorporate visualisa-
tions in their music making activities.

References
Ableson, H. 1982. Apple Logo. NH: BYTE/McGraw-

Hill.
Bamberger, J. 1974. Progress report: Logo music pro-

ject. Technical report, A.I. Laboratory, Massachu-
setts Institute of Technology.

Desain, P. and Honing, H. 1988. “LOCO: A compo-
sition microworld in Logo” Computer Music Jour-
nal. 12, 3. 30-42.

Gargarian, G. 1996. “The Art of Design” Constructivism
in practice: Designing, thinking, and learning in a
digital world. eds, K. B. Kafai and M. Resnick.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Guzdial, M. 1991. Teaching Programming with Music:
An Approach to Teaching Young Students About
Logo. MA: Logo Foundation.
http://el.media.mit.edu/Logo-foundation/pubs/papers
/teaching_progr.html (12th April 2006).

Miell, D. Raymond, M. and Hargraves, D. 2005. Musi-
cal Communication. Oxford: Oxford University
Press.

Papert, S. 1980. Mindstorms: Children, Computers, and
Powerful Ideas. New York: Basic Books.

Sorensen, A. 2005. Impromptu: An interactive program-
ming environment for composition and performance.
Presented to the Australasian Computer Music Con-
ference 2005. Brisbane: ACMA. 149-153.

Sorensen, A. 2006. Impromptu.
http://impromptu.moso.com.au/ (12th April 2006).

Whitney, J. 1980. Digital Harmony: On the complemen-
tarity of music and visual art. Peterborough, NH:
Byte Books.

