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Abstract 
This paper presents a review of compositional morph-
ing systems, briefly examining the current techniques 
used and touching on the related motivations, applica-
tions and possibilities.  Firstly, terms will be explained, 
the artistic purposes and application domains related to 
morphing discussed, background examined and the 
scope of the review defined.  A number of significant 
works will then be briefly described.  Following this, 
each system will be positioned within a framework 
which allows the reader to visualise and compare the 
nature of the various techniques used.  The applicability 
of the techniques is then discussed.  The article con-
cludes with a summary of the state of morphing, point-
ing to possibilities for future research. 

Introduction 
Many projects in algorithmic composition have been 
carried out that explore various morphing techniques, for 
different purposes.  While there are collections of more or 
less relevant reference material (Polansky 2005), no sur-
vey of compositional morphing in particular is available.  
The review provided here will be useful as a repository 
of ideas as well as a reference point for ascertaining the 
state and direction of the field and identifying areas for 
future development. 
 But first of all, what is morphing? The general defi-
nition of morphing given by Larry Polansky (1992) is 
mostly followed here, albeit with simpler terms.  It is 
conceived as a process that utilises two musical patterns 
to create a “mutant” or “morph” that may work as a 
transition between the two. Formally,  
 
       MTSf =!),,(   
 
where S is the source pattern, T , the target, M , the 

resulting mutant and, ! , a variable to determine how 
closely M will resemble S or T . !  is normalised 

such that when 0=! , SM = and when 1=! , 
TM = .   

 It is important for us to distinguish between “inter-
polation”, “morphing” and “transformation”.  Interpola-
tion is a technique for the estimating unknown values 
between known points.  Morphing, however, is more 
concerned with aesthetic integration of separate music; 
interpolation may or may not be used as part of this.  A 
transformation is any method for changing a given piece 
of music, including morphing. 

 Two artistic purposes that motivate the use of 
morphing in music can be distinguished, with associated 
applications.  One is to create a transition whereby S , 

M  and T  can be positioned in sequence to create a 
smooth and/or coherent whole.  This has potential in 
multimedia, computer games, live DJ mixing or any 
context where automatic transitioning between music is 
required.  Another artistic purpose can be to create a mu-
tant, whereby M  has aesthetic interest in the way it 
shares properties of S and T , but may or may not func-
tion as a transition.  This is more applicable to com-
puter assisted composition and musical experimentation. 
 This paper is particularly concerned with “Compo-
sitional” Morphing (CM) where the musical data being 
morphed consists of note-events with parameters such as 
onset, pitch, duration and dynamic.  This is contrasted 
with morphing other aspects of music such as sound 
(Polansky and Erbe 1996) or expression (Canazza, Poli, 
Drioli, Roda and Vidolin 2001).  Classifying a musical 
algorithm as “compositional” is difficult, due to conver-
sions to various non-note-level representations that facili-
tate the design and execution of the algorithm.  As well 
as this, sonic parameters can sometimes operate in a 
compositional way, for example, severe amplitude 
modulation on a continuous sound could be perceived as 
a series of “note-events”.  This review concentrates 
mostly on algorithms that take note input and generate 
note output, while others that generate note output only 
may be covered less comprehensively. 

Background in music 

The origin of the concept of morphing in music is diffi-
cult to define clearly, however the idea has been explored 
by composers for at least three centuries with the begin-
ning of the classical period, which emphasised key 
modulation and contrasting emotions within the same 
work.  Oppenheim (1995) points to the development of 
the Sonata from 1780 which often includes a transitional 
section.  Although the Sonata is not particularly con-
cerned with morphing, the composer deals with sections 
of contrasting themes.  Various composers have explic-
itly dealt with the concept of metamorphosis, including 
Cage’s 1938 series (Cage 1938), Hindemith’s 1943 
adaption of Weber themes (Hindemith 1989) and Philip 
Glass (Glass 2000).  

Particularly relevant aspects of traditional music 
theory include modulation techniques, pivot notes and 
chords and bridge sections.  These techniques have been 
dealt with previously (Wooller and Brown 2005) and are 
absent from this review which focuses instead on compu-
tationally explicit algorithmic systems. 



 

 
Experimental composers and theorists have also 

considered various aspects of morphing.  Tenney 
(Tenney and Polansky 1979) touched on issues relating 
to the similarity and difference of temporal gestalt units.  
Rosenboom speculated on transitional topologies and 
the stochastic induction of perturbations within mutation 
functions (Rosenboom 1982).  Composers who devel-
oped software systems that embody similar ideas within 
the context of compositional morphing are discussed 
below. 

Compositional Morphing Systems 
Music IV and GRIN94 

Max Mathews created the first musical morphing algo-
rithm in 1966 on the MUSIC IV platform (Mathews and 
L.Rosler 1969).  This work developed as a demonstra-
tion of the algorithmic possibilities of Mathews’ and 
Rosler’s graphical input program, GRIN94.  In this sys-
tem, a monophonic melody was represented with sepa-
rate functions, or envelopes, for each dimension of ampli-
tude, frequency, duration and glissando.  The frequency 
functions were made of flat (gradient 0) segments for the 
tone of each note, while the amplitude function was used 
to accent the first beat in each measure.  Glissando was 
not used in the morphing example.  The discrete note 
durations, or inter-onset times, required conversion to a 
continuous function in order to become algebraically 
manipulable. 

Mapping discrete start times to a continuous do-
main is a problem that can be approached in many ways; 
Mathews’ and Rosler’s technique is particularly ingen-
ious.  To generate a melody, a note would be created 
and the duration function would be sampled at that 
point.  The sampled value would specify the inter-onset 
distance to the next note and sample point.  The “self-
synchonising” form of the duration function required that 
each segment has a gradient of -1, so that if the sampling 
is ahead or behind a certain amount, the next note and 
sample point will be in time.   

 

 
 
Figure 1. Self-synchronizing function for inter-onsets  
  (reprinted with permission). 
 
Half-way between each note was chosen arbitrarily as the 
start and end points for each of these segments.  Com-
bining self-synchronising functions with others will re-
sult only in other self-synchronising functions and so the 

coherent quantisation of durations to known values is 
inherent in the style of representation.  

Having dealt with the problem of continuous repre-
sentation, morphing becomes simply a matter of com-
bining the functions in each pattern, using ! to weight 
each one.  For its time, a somewhat convincing result 
was recorded and produced on the vinyl accompanying 
the book (Mathews and L.Rosler 1969).  It morphs from 
the British grenadiers to When Johnny comes marching 
home and back.  

HMSL 

The Heirarchical Music Specification Language (HMSL) 
was developed by Phil Burke, Larry Polansky and David 
Rosenboom from 1980, and is implemented in FORTH 
(Burke, Polansky and Rosenboom 2005).  It is partially 
inspired by the musical theories of Jim Tenney, includ-
ing the notion that general patterns should be easily 
mappable to various levels of a music hierarchy.  Polan-
sky developed code in HMSL to aid the experimental 
morphing of music within some of his compositions,  
including distance music (Polansky 1987),  Bedhaya 
Guthrie/Bedhaya Sadra for Voices, Kemanak, Melody 
Instruments, and Accompanimental Javanese Gamelan 
(Polansky 1996), 51 Melodies (Polansky 1991), Two 
Children’s Songs(Polansky 1992) and Road to Chima-
chum.  MIDI renderings of these last three can be heard 
online (Polansky 2006).   

This music was based on a theoretical framework 
developed by Polansky that explores and extends the 
application of mathematical set theory and similarity 
theory to experimental music.  These ideas have been 
presented at conferences (Polansky and McKinney 1991) 
(Polansky 1992) and covered more comprehensively in 
journal publications (Polansky 1996).  To summarise 
the primary aspects; S and T  are conceived as ordered 
sets.  Given this representation, various analytical met-
rics can be applied to obtain some notion of distance 
between the patterns and, conversely, mutation algor-
ithms can generate music at a specific distance, ! , be-
tween two sets.  The various approaches are classified 
according to their foci and techniques: interval magni-
tude (difference between one item in the set and the next) 
or direction (up or down), linear (processing the set from 
start to finish) or combinatorial (utilising intervals from 
each item in the set to every other item), unordered (non-
structural statistics) or ordered (utilising the sequential 
order of the pattern).  HMSL is unsupported by modern 
operating systems however much of it has been ported to 
Java as the Java Music Specification Language (JMSL, 
below). 

MMorph / DMorph 

Danny Oppenheim first published a short paper on 
morphing, presenting the MMorph software (Oppenheim 
1995).  Since then, it was incorporated as a computer-
assisted algorithmic composition tool (CAAC) within 
DMix, and is discussed in much detail as a patent 
(Oppenheim 1995).  The algorithm is realtime, interac-
tive and deals with n-source morphs.  This extends the 
original definition of the morphing function to include 
more than two input patterns, 
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As a result, the emphasis is also less on automatic tran-
sitioning (from source to target) and more on the creation 
of a musical hybrid.   
 Oppenheim’s general procedure is to group notes 
from each source together based on some kind of simi-
larity logic.  The note properties of all notes in the 
group are interpolated and this value is used to create a 
new note.  There are two different generic implementa-
tion of this procedure: time-warped grouping, creates 
groups based on the order of the notes, and time syn-
chronous grouping, which creates groups based on the 
similarity of note-onset. 
 Musical demos are no longer available from IBM’s 
website, however, Oppenheim is able to send them (mu-
sic@us.ibm.com). 

JMSL 

Nick Didkovsky and Phil Burke have extended the capa-
bilities of JMSL beyond the original HMSL (Didkovsky 
and Burke 2006).  Particular aspects of JMSL which are 
relevant to morphing are the “Binary copy buffer trans-
form” (BCBT) (Didkovsky and Burke 2004) and an app-
let called the Shubert Impromptu Morpher (Didkovsky 
1997).  The BCBT is a function that is part of the score 
editing window in JMSL (Didkovsky and Burke 2004), 
where the user can copy segments of music into two 
different buffers.  The BCBT function then uses a morph-
ing algorithm to combine the two buffers and paste the 
result onto the score.  In this way, buffer one is S , buffer 

two is T , 5.0=! , and the pasted result isM .  The 
“Zipper interleave transform” is a morphing algorithm 
that comes with JMSL which iterates through S  and 
T , alternately placing an element from one or the other 
into M .  Through the extensible code design there is 
great potential for users of JMSL to create custom 
BCBT plug-ins for the score editor. 

Didkovsky’s Shubert Impromtu Morpher applet 
stochastically generates music from statistics obtained by 
analysing a Schubert performance, as S .  T is user-

defined values of the statistics. The user controls ! , 
and can disable the interpolation of individual statistical 
parameters.  

The Musifier 

Jonus Edlund has developed an adaptive music system, 
the Musifier (Edlund 2004), which utilises composi-
tional morphing as a key component.  The Musifier per-
forms n-source morphing on different themes provided by 
the composer.  The intention is for a computer game 
engine to continually adjust the weight !  for each 
theme, based upon the prominence of various game state 
elements.   

The details of the morphing techniques that Edlund 
uses are secret; however, musical demonstrations are 
available for download.  More recently a web application 
has been made which allows a user to specify the 
weights of four different themes (Edlund 2006).  A par-

ticularly useful advance is apparent simply through lis-
tening to the examples.  The problem of morphing be-
tween parts of different timbre has been adequately han-
dled in MIDI by cross-fading the volume of parts on two 
different channels and sending identical note events to 
both channels.  To speculate, an abstract harmonic repre-
sentation may have been implemented to provide unified 
movement to harmonic parts.  Rhythmic segments ap-
pear to be treated as indivisible gestalt units. 

Edlund uses three criteria for adaptive music and 
morphing: responsiveness, continuity and complexity.  
Responsiveness is how well the system responds to 
change.  Continuity is concerned with matching the con-
tour of the changes and changing smoothly. Complexity 
is how well the algorithm can convert many-dimensional 
game-state data into equally dimensional musical data 
and generate suitable music from it. 

Beat space 

Momeni and Wessel have developed software using 
MAX/MSP which morphs between parameter states on a 
2D surface.  Gaussian kernels are used to control the 
prominence of each parameter state on the surface 
(Momeni and Wessel 2003).  While this software is 
primarily concerned with morphing sonic parameters, the 
Beat Space component deal with musical material, 
morphing between parameters that control probabilities 
of beat generation within a certain eighth-note slots.  S  

and T  are deterministically represented such that the 
probability for any slot can be only 0 or 1, while M  is 
generated from the non-deterministic interpolations. 

LEMu2: Morpheus 

I have developed LEMu 2: Morpheus since 2004.  As 
with DMorph, this system is interactive in that the user 
can select algorithms, control ! (using MIDI or mouse) 
and edit S  and T in realtime while the morph is run-

ning.  When the user is not controlling! , the transi-
tion is executed automatically, such that t=! .  Un-
like DMorph and The Musifier, Morpheus performs 2-
source (source, target), rather than n-source morphs.   

The first two algorithms developed for this system, 
weighted-selection and Markov morphing, are already 
described (Wooller and Brown 2005).  Developments 
since then have been deterministic rather than stochastic: 
manual note-priority morph and abstraction-
interpolation.  

Manual note-priority morph allows the composer to 
manually assign a “priority” rating, from 0 to 1, to in-
dividual notes.  While there are a number of possible 
ways an algorithm could use this information, the note-
priority morph simply filters notes according their pri-
ority and the value of! . 

Abstraction-interpolation is essentially identical to 
Mathew’s, although it uses a different technique for the 
mapping of discrete note-onsets into the continuous do-
main.  Segments have a gradient of 0.  Notes are created 
at points where the accumulated area of the function up 
to the current point equals the current value squared.  
The tracking of area is more computationally intensive 
and it has been difficult to obtain rhythmically coherent 
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results, but this approach has potential for responsive-
ness to realtime changes and combinations of very differ-
ent inter-onsets. This software, as well as musical exam-
ples, is available for download on the LEMu website 
(Wooller 2005). 

Discussion of techniques 
A framework has been developed, whereby particular 
techniques and systems are conceived and related in 
terms of function and context.  The former is about 
wether the algorithm abstracts information from the data 
(analytic), transforms the data content (transformational), 
or creates raw musical data from abstracted information 
(generative).  The latter indicates the level of contextual 
information which informs the algorithm.  These are 
continuous descriptors, which allow for the techniques to 
be positioned on two axes, as in figure 2.  Further de-
tails and justification of this framework and the associ-
ated terminology is available (Wooller, Brown, 
Miranda, Berry and Diederic 2005). 

Within Music IV the music is being analysed to ex-
tract continuous functions for each dimension.  The in-
terpolation of values from source and target functions is a 
transformational algorithm and the rendering of the func-
tions into note events is generative.  This is a low con-
text process as only the data at any particular time is 
used; there is no look ahead or contextual memory. 

Polansky has explored many techniques for combin-
ing sequences of note events to his pieces, notably 51 
Melodies.  The techniques used vary in the utilisation of 
contextual information.  “Linear-ordered” algorithms 
have access to the narrow context of immediate notes as 
sequences are processed from start to finish.  “Combina-
torial-unordered” algorithms can incorporate data from 
the whole sequence.  The algorithms use various forms 
of data other than absolute values, for each dimension of 
pitch and start-time: relative (intervals), contour (gradi-
ent), magnitude, direction.  Changing to and from these 
representations requires some degree of analysis and gen-
eration. 

 

 
 
Figure 2. Morphing systems compared using framework 
 

The Shubert Impromptu morpher used an analytical 
process to extract general statistical information from the 
original piano performance.  Information is obtained from 
the whole piece however much of the temporal-structural 
dimension is omitted, making for a medium-level of 
contextual breadth.  The interpolation of statistics is 
transformational, and the stochastic creation of notes 
from statistics is generative.  Beatspace is similarly gen-
erative and transformational but without an analytical 
component or the contextual breadth of rich statistical 
inputs. 

Within DMorph (Oppenheim 1995), the creation of 
note groupings from each of the input sequences amounts 
to an analytic process, where higher-level connections 
between note parameters within the input are found.  
Motivic analysis is also used to create immutable seg-
ments.  This provides greater breadth of musical contex-
tual information to the algorithm.  The interpolation 
functions applied to parameters within note groups is 
transformational and the pairing of interpolated param-
eters to create notes is generative.  DMorph has a num-
ber of control parameters which provides additional ex-
ternal context. 

The Markov-morph algorithm within LEMu2 ana-
lyses the probabilities of note sequences to a user-defined 
depth. 

Applicability of techniques 
While there seem to be a number of applications for 
compositional morphing, it is yet to become widely 
used.  Despite the popularity of computer games, the 
percentage of CPU allocated to sound and music is 
minimal, with graphical effects being top-priority 
(Brown 2006;Edlund 2006).  In this way the potential of 
morphing to be widely adopted within the games indus-
try is stifled because increases in CPU speeds relate 
mostly to increases in visual effects, rather than interac-
tive musical or sonic complexity. 

In live electronic music, morphing has some poten-
tial as an alternative to mixing with the ability to transi-
tions from more stylistically divergent pieces of music 
and to do so in a way that is interesting at a composi-
tional level.  This is only really applicable for pro-
ducer/DJs who intend to perform their own music live or 
have access to the master files of the songs they are mix-
ing.  Perhaps the biggest obstacle with this application 
is the fact that many people are accustomed to DJ mix-
ing, while the aesthetics of morphing, despite being in-
teresting, are still quite alien.  This was discovered 
through a substantial amount of qualitative feedback from 
preliminary trials and focus groups on LEMu2.  Perhaps 
it could be overcome through more gradual introduction 
of morphing techniques. 

Computer assisted composition systems that use 
morphing have a small user base.  In the case of the 
JMSL score editor, this is more likely due to the imma-
turity of the software.  In the case of DMix, it could be 
lack of publicity, support and availability. 

Conclusion 
The various systems reviewed comprise the current state 
of compositional morphing.  Despite an array of tech-
niques available, compositional morphing is yet to be 



 

 
commonly used.  When listening to the morphing 
demos from the different systems it becomes apparent 
that a number of problems have been overcome, while 
others remain, being more fundamental to the nature of 
the task. 

Mathews’ original system overcame the problem of 
representing note-onset with a continuous function.  The 
various morphing algorithms in HMSL advanced con-
temporary procedural music.  Oppenheim strove for a 
more mainstream musical aesthetic and his approach of 
grouping note events allowed DMorph to easily handle 
n-sources.  Oppenheim experimented with morphing 
between parts with very contrasting musical roles, illus-
trating the fundamental problem of morphing music and 
parts that are extremely different.  Edlund eased this 
problem by sending identical note events to two parts of 
different timbres and cross-fading them.  From LEMu2, 
the Markov models have been applied with some degree 
of success when used on melodic parts in particular.   

Questions that are yet to be comprehensively inves-
tigated are:  

• How can structural form be applied within a 
morph?  

• What are useful methods for inter-part communica-
tion (Edlund may have begun this)?  

• What makes a transition musically “Coherent”, 
even when it is not “Smooth”?  For example, sud-
denly contrasting sections within a morph can 
sometimes work well musically. 

• What approaches are possible, other than layering 
(eg cross-fade/weighted selection/priority filtering), 
recombination (HMSL), probabilistic generation, 
note grouping-interpolation (DMix) and functional 
abstraction-interpolation (Music IV)? 
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