

Rene Wooller
Queensland University of Technology
Victoria Park Road
Kelvin Grove, 4059
Australia
r.wooller@qut.edu.au

Review of Compositional
Morphing: Works,
Techniques, Applications
and Possibilities

Abstract
This paper presents a review of compositional morph-
ing systems, briefly examining the current techniques
used and touching on the related motivations, applica-
tions and possibilities. Firstly, terms will be explained,
the artistic purposes and application domains related to
morphing discussed, background examined and the
scope of the review defined. A number of significant
works will then be briefly described. Following this,
each system will be positioned within a framework
which allows the reader to visualise and compare the
nature of the various techniques used. The applicability
of the techniques is then discussed. The article con-
cludes with a summary of the state of morphing, point-
ing to possibilities for future research.

Introduction
Many projects in algorithmic composition have been
carried out that explore various morphing techniques, for
different purposes. While there are collections of more or
less relevant reference material (Polansky 2005), no sur-
vey of compositional morphing in particular is available.
The review provided here will be useful as a repository
of ideas as well as a reference point for ascertaining the
state and direction of the field and identifying areas for
future development.
 But first of all, what is morphing? The general defi-
nition of morphing given by Larry Polansky (1992) is
mostly followed here, albeit with simpler terms. It is
conceived as a process that utilises two musical patterns
to create a “mutant” or “morph” that may work as a
transition between the two. Formally,

 MTSf =!),,(

where S is the source pattern, T , the target, M , the

resulting mutant and, ! , a variable to determine how
closely M will resemble S or T . ! is normalised

such that when 0=! , SM = and when 1=! ,
TM = .

 It is important for us to distinguish between “inter-
polation”, “morphing” and “transformation”. Interpola-
tion is a technique for the estimating unknown values
between known points. Morphing, however, is more
concerned with aesthetic integration of separate music;
interpolation may or may not be used as part of this. A
transformation is any method for changing a given piece
of music, including morphing.

 Two artistic purposes that motivate the use of
morphing in music can be distinguished, with associated
applications. One is to create a transition whereby S ,

M and T can be positioned in sequence to create a
smooth and/or coherent whole. This has potential in
multimedia, computer games, live DJ mixing or any
context where automatic transitioning between music is
required. Another artistic purpose can be to create a mu-
tant, whereby M has aesthetic interest in the way it
shares properties of S and T , but may or may not func-
tion as a transition. This is more applicable to com-
puter assisted composition and musical experimentation.
 This paper is particularly concerned with “Compo-
sitional” Morphing (CM) where the musical data being
morphed consists of note-events with parameters such as
onset, pitch, duration and dynamic. This is contrasted
with morphing other aspects of music such as sound
(Polansky and Erbe 1996) or expression (Canazza, Poli,
Drioli, Roda and Vidolin 2001). Classifying a musical
algorithm as “compositional” is difficult, due to conver-
sions to various non-note-level representations that facili-
tate the design and execution of the algorithm. As well
as this, sonic parameters can sometimes operate in a
compositional way, for example, severe amplitude
modulation on a continuous sound could be perceived as
a series of “note-events”. This review concentrates
mostly on algorithms that take note input and generate
note output, while others that generate note output only
may be covered less comprehensively.

Background in music

The origin of the concept of morphing in music is diffi-
cult to define clearly, however the idea has been explored
by composers for at least three centuries with the begin-
ning of the classical period, which emphasised key
modulation and contrasting emotions within the same
work. Oppenheim (1995) points to the development of
the Sonata from 1780 which often includes a transitional
section. Although the Sonata is not particularly con-
cerned with morphing, the composer deals with sections
of contrasting themes. Various composers have explic-
itly dealt with the concept of metamorphosis, including
Cage’s 1938 series (Cage 1938), Hindemith’s 1943
adaption of Weber themes (Hindemith 1989) and Philip
Glass (Glass 2000).

Particularly relevant aspects of traditional music
theory include modulation techniques, pivot notes and
chords and bridge sections. These techniques have been
dealt with previously (Wooller and Brown 2005) and are
absent from this review which focuses instead on compu-
tationally explicit algorithmic systems.

Experimental composers and theorists have also

considered various aspects of morphing. Tenney
(Tenney and Polansky 1979) touched on issues relating
to the similarity and difference of temporal gestalt units.
Rosenboom speculated on transitional topologies and
the stochastic induction of perturbations within mutation
functions (Rosenboom 1982). Composers who devel-
oped software systems that embody similar ideas within
the context of compositional morphing are discussed
below.

Compositional Morphing Systems
Music IV and GRIN94

Max Mathews created the first musical morphing algo-
rithm in 1966 on the MUSIC IV platform (Mathews and
L.Rosler 1969). This work developed as a demonstra-
tion of the algorithmic possibilities of Mathews’ and
Rosler’s graphical input program, GRIN94. In this sys-
tem, a monophonic melody was represented with sepa-
rate functions, or envelopes, for each dimension of ampli-
tude, frequency, duration and glissando. The frequency
functions were made of flat (gradient 0) segments for the
tone of each note, while the amplitude function was used
to accent the first beat in each measure. Glissando was
not used in the morphing example. The discrete note
durations, or inter-onset times, required conversion to a
continuous function in order to become algebraically
manipulable.

Mapping discrete start times to a continuous do-
main is a problem that can be approached in many ways;
Mathews’ and Rosler’s technique is particularly ingen-
ious. To generate a melody, a note would be created
and the duration function would be sampled at that
point. The sampled value would specify the inter-onset
distance to the next note and sample point. The “self-
synchonising” form of the duration function required that
each segment has a gradient of -1, so that if the sampling
is ahead or behind a certain amount, the next note and
sample point will be in time.

Figure 1. Self-synchronizing function for inter-onsets
 (reprinted with permission).

Half-way between each note was chosen arbitrarily as the
start and end points for each of these segments. Com-
bining self-synchronising functions with others will re-
sult only in other self-synchronising functions and so the

coherent quantisation of durations to known values is
inherent in the style of representation.

Having dealt with the problem of continuous repre-
sentation, morphing becomes simply a matter of com-
bining the functions in each pattern, using ! to weight
each one. For its time, a somewhat convincing result
was recorded and produced on the vinyl accompanying
the book (Mathews and L.Rosler 1969). It morphs from
the British grenadiers to When Johnny comes marching
home and back.

HMSL

The Heirarchical Music Specification Language (HMSL)
was developed by Phil Burke, Larry Polansky and David
Rosenboom from 1980, and is implemented in FORTH
(Burke, Polansky and Rosenboom 2005). It is partially
inspired by the musical theories of Jim Tenney, includ-
ing the notion that general patterns should be easily
mappable to various levels of a music hierarchy. Polan-
sky developed code in HMSL to aid the experimental
morphing of music within some of his compositions,
including distance music (Polansky 1987), Bedhaya
Guthrie/Bedhaya Sadra for Voices, Kemanak, Melody
Instruments, and Accompanimental Javanese Gamelan
(Polansky 1996), 51 Melodies (Polansky 1991), Two
Children’s Songs(Polansky 1992) and Road to Chima-
chum. MIDI renderings of these last three can be heard
online (Polansky 2006).

This music was based on a theoretical framework
developed by Polansky that explores and extends the
application of mathematical set theory and similarity
theory to experimental music. These ideas have been
presented at conferences (Polansky and McKinney 1991)
(Polansky 1992) and covered more comprehensively in
journal publications (Polansky 1996). To summarise
the primary aspects; S and T are conceived as ordered
sets. Given this representation, various analytical met-
rics can be applied to obtain some notion of distance
between the patterns and, conversely, mutation algor-
ithms can generate music at a specific distance, ! , be-
tween two sets. The various approaches are classified
according to their foci and techniques: interval magni-
tude (difference between one item in the set and the next)
or direction (up or down), linear (processing the set from
start to finish) or combinatorial (utilising intervals from
each item in the set to every other item), unordered (non-
structural statistics) or ordered (utilising the sequential
order of the pattern). HMSL is unsupported by modern
operating systems however much of it has been ported to
Java as the Java Music Specification Language (JMSL,
below).

MMorph / DMorph

Danny Oppenheim first published a short paper on
morphing, presenting the MMorph software (Oppenheim
1995). Since then, it was incorporated as a computer-
assisted algorithmic composition tool (CAAC) within
DMix, and is discussed in much detail as a patent
(Oppenheim 1995). The algorithm is realtime, interac-
tive and deals with n-source morphs. This extends the
original definition of the morphing function to include
more than two input patterns,

 MSSSf n =!),,,(...1

As a result, the emphasis is also less on automatic tran-
sitioning (from source to target) and more on the creation
of a musical hybrid.
 Oppenheim’s general procedure is to group notes
from each source together based on some kind of simi-
larity logic. The note properties of all notes in the
group are interpolated and this value is used to create a
new note. There are two different generic implementa-
tion of this procedure: time-warped grouping, creates
groups based on the order of the notes, and time syn-
chronous grouping, which creates groups based on the
similarity of note-onset.
 Musical demos are no longer available from IBM’s
website, however, Oppenheim is able to send them (mu-
sic@us.ibm.com).

JMSL

Nick Didkovsky and Phil Burke have extended the capa-
bilities of JMSL beyond the original HMSL (Didkovsky
and Burke 2006). Particular aspects of JMSL which are
relevant to morphing are the “Binary copy buffer trans-
form” (BCBT) (Didkovsky and Burke 2004) and an app-
let called the Shubert Impromptu Morpher (Didkovsky
1997). The BCBT is a function that is part of the score
editing window in JMSL (Didkovsky and Burke 2004),
where the user can copy segments of music into two
different buffers. The BCBT function then uses a morph-
ing algorithm to combine the two buffers and paste the
result onto the score. In this way, buffer one is S , buffer

two is T , 5.0=! , and the pasted result isM . The
“Zipper interleave transform” is a morphing algorithm
that comes with JMSL which iterates through S and
T , alternately placing an element from one or the other
into M . Through the extensible code design there is
great potential for users of JMSL to create custom
BCBT plug-ins for the score editor.

Didkovsky’s Shubert Impromtu Morpher applet
stochastically generates music from statistics obtained by
analysing a Schubert performance, as S . T is user-

defined values of the statistics. The user controls ! ,
and can disable the interpolation of individual statistical
parameters.

The Musifier

Jonus Edlund has developed an adaptive music system,
the Musifier (Edlund 2004), which utilises composi-
tional morphing as a key component. The Musifier per-
forms n-source morphing on different themes provided by
the composer. The intention is for a computer game
engine to continually adjust the weight ! for each
theme, based upon the prominence of various game state
elements.

The details of the morphing techniques that Edlund
uses are secret; however, musical demonstrations are
available for download. More recently a web application
has been made which allows a user to specify the
weights of four different themes (Edlund 2006). A par-

ticularly useful advance is apparent simply through lis-
tening to the examples. The problem of morphing be-
tween parts of different timbre has been adequately han-
dled in MIDI by cross-fading the volume of parts on two
different channels and sending identical note events to
both channels. To speculate, an abstract harmonic repre-
sentation may have been implemented to provide unified
movement to harmonic parts. Rhythmic segments ap-
pear to be treated as indivisible gestalt units.

Edlund uses three criteria for adaptive music and
morphing: responsiveness, continuity and complexity.
Responsiveness is how well the system responds to
change. Continuity is concerned with matching the con-
tour of the changes and changing smoothly. Complexity
is how well the algorithm can convert many-dimensional
game-state data into equally dimensional musical data
and generate suitable music from it.

Beat space

Momeni and Wessel have developed software using
MAX/MSP which morphs between parameter states on a
2D surface. Gaussian kernels are used to control the
prominence of each parameter state on the surface
(Momeni and Wessel 2003). While this software is
primarily concerned with morphing sonic parameters, the
Beat Space component deal with musical material,
morphing between parameters that control probabilities
of beat generation within a certain eighth-note slots. S

and T are deterministically represented such that the
probability for any slot can be only 0 or 1, while M is
generated from the non-deterministic interpolations.

LEMu2: Morpheus

I have developed LEMu 2: Morpheus since 2004. As
with DMorph, this system is interactive in that the user
can select algorithms, control ! (using MIDI or mouse)
and edit S and T in realtime while the morph is run-

ning. When the user is not controlling! , the transi-
tion is executed automatically, such that t=! . Un-
like DMorph and The Musifier, Morpheus performs 2-
source (source, target), rather than n-source morphs.

The first two algorithms developed for this system,
weighted-selection and Markov morphing, are already
described (Wooller and Brown 2005). Developments
since then have been deterministic rather than stochastic:
manual note-priority morph and abstraction-
interpolation.

Manual note-priority morph allows the composer to
manually assign a “priority” rating, from 0 to 1, to in-
dividual notes. While there are a number of possible
ways an algorithm could use this information, the note-
priority morph simply filters notes according their pri-
ority and the value of! .

Abstraction-interpolation is essentially identical to
Mathew’s, although it uses a different technique for the
mapping of discrete note-onsets into the continuous do-
main. Segments have a gradient of 0. Notes are created
at points where the accumulated area of the function up
to the current point equals the current value squared.
The tracking of area is more computationally intensive
and it has been difficult to obtain rhythmically coherent

Narrow

 Analytic Transformational Generative

51 Melodies
(HMSL)

 Music IV/
GRIN94

Beatspace

Shubert Impromptu Morpher

Broad

C
o
n
t
e
x
t

F u n c t i o n

DMorph

LEMu2

results, but this approach has potential for responsive-
ness to realtime changes and combinations of very differ-
ent inter-onsets. This software, as well as musical exam-
ples, is available for download on the LEMu website
(Wooller 2005).

Discussion of techniques
A framework has been developed, whereby particular
techniques and systems are conceived and related in
terms of function and context. The former is about
wether the algorithm abstracts information from the data
(analytic), transforms the data content (transformational),
or creates raw musical data from abstracted information
(generative). The latter indicates the level of contextual
information which informs the algorithm. These are
continuous descriptors, which allow for the techniques to
be positioned on two axes, as in figure 2. Further de-
tails and justification of this framework and the associ-
ated terminology is available (Wooller, Brown,
Miranda, Berry and Diederic 2005).

Within Music IV the music is being analysed to ex-
tract continuous functions for each dimension. The in-
terpolation of values from source and target functions is a
transformational algorithm and the rendering of the func-
tions into note events is generative. This is a low con-
text process as only the data at any particular time is
used; there is no look ahead or contextual memory.

Polansky has explored many techniques for combin-
ing sequences of note events to his pieces, notably 51
Melodies. The techniques used vary in the utilisation of
contextual information. “Linear-ordered” algorithms
have access to the narrow context of immediate notes as
sequences are processed from start to finish. “Combina-
torial-unordered” algorithms can incorporate data from
the whole sequence. The algorithms use various forms
of data other than absolute values, for each dimension of
pitch and start-time: relative (intervals), contour (gradi-
ent), magnitude, direction. Changing to and from these
representations requires some degree of analysis and gen-
eration.

Figure 2. Morphing systems compared using framework

The Shubert Impromptu morpher used an analytical
process to extract general statistical information from the
original piano performance. Information is obtained from
the whole piece however much of the temporal-structural
dimension is omitted, making for a medium-level of
contextual breadth. The interpolation of statistics is
transformational, and the stochastic creation of notes
from statistics is generative. Beatspace is similarly gen-
erative and transformational but without an analytical
component or the contextual breadth of rich statistical
inputs.

Within DMorph (Oppenheim 1995), the creation of
note groupings from each of the input sequences amounts
to an analytic process, where higher-level connections
between note parameters within the input are found.
Motivic analysis is also used to create immutable seg-
ments. This provides greater breadth of musical contex-
tual information to the algorithm. The interpolation
functions applied to parameters within note groups is
transformational and the pairing of interpolated param-
eters to create notes is generative. DMorph has a num-
ber of control parameters which provides additional ex-
ternal context.

The Markov-morph algorithm within LEMu2 ana-
lyses the probabilities of note sequences to a user-defined
depth.

Applicability of techniques
While there seem to be a number of applications for
compositional morphing, it is yet to become widely
used. Despite the popularity of computer games, the
percentage of CPU allocated to sound and music is
minimal, with graphical effects being top-priority
(Brown 2006;Edlund 2006). In this way the potential of
morphing to be widely adopted within the games indus-
try is stifled because increases in CPU speeds relate
mostly to increases in visual effects, rather than interac-
tive musical or sonic complexity.

In live electronic music, morphing has some poten-
tial as an alternative to mixing with the ability to transi-
tions from more stylistically divergent pieces of music
and to do so in a way that is interesting at a composi-
tional level. This is only really applicable for pro-
ducer/DJs who intend to perform their own music live or
have access to the master files of the songs they are mix-
ing. Perhaps the biggest obstacle with this application
is the fact that many people are accustomed to DJ mix-
ing, while the aesthetics of morphing, despite being in-
teresting, are still quite alien. This was discovered
through a substantial amount of qualitative feedback from
preliminary trials and focus groups on LEMu2. Perhaps
it could be overcome through more gradual introduction
of morphing techniques.

Computer assisted composition systems that use
morphing have a small user base. In the case of the
JMSL score editor, this is more likely due to the imma-
turity of the software. In the case of DMix, it could be
lack of publicity, support and availability.

Conclusion
The various systems reviewed comprise the current state
of compositional morphing. Despite an array of tech-
niques available, compositional morphing is yet to be

commonly used. When listening to the morphing
demos from the different systems it becomes apparent
that a number of problems have been overcome, while
others remain, being more fundamental to the nature of
the task.

Mathews’ original system overcame the problem of
representing note-onset with a continuous function. The
various morphing algorithms in HMSL advanced con-
temporary procedural music. Oppenheim strove for a
more mainstream musical aesthetic and his approach of
grouping note events allowed DMorph to easily handle
n-sources. Oppenheim experimented with morphing
between parts with very contrasting musical roles, illus-
trating the fundamental problem of morphing music and
parts that are extremely different. Edlund eased this
problem by sending identical note events to two parts of
different timbres and cross-fading them. From LEMu2,
the Markov models have been applied with some degree
of success when used on melodic parts in particular.

Questions that are yet to be comprehensively inves-
tigated are:

• How can structural form be applied within a
morph?

• What are useful methods for inter-part communica-
tion (Edlund may have begun this)?

• What makes a transition musically “Coherent”,
even when it is not “Smooth”? For example, sud-
denly contrasting sections within a morph can
sometimes work well musically.

• What approaches are possible, other than layering
(eg cross-fade/weighted selection/priority filtering),
recombination (HMSL), probabilistic generation,
note grouping-interpolation (DMix) and functional
abstraction-interpolation (Music IV)?

Acknowledgements
Special thanks to L. Polansky, D. Oppenheim, N.
Didkovsky for help with research, Andrew Brown and
the ACMC reviewers for comments and John Wiley &
Sons for granting permission to reprint.

References
Brown, A. 2006. Pers. Comm. RE Working with Au-

ran.
Burke, P. Polansky, L. and Rosenboom, D. 2005.

HMSL, SoftSynth.
 http://www.softsynth.com/hmsl/ (7th March, 2006).
Cage, J. 1938. "Metamorphosis for piano I-V". John

Cage: Early Piano Music (CD), ECM.
Canazza, S. Poli, G. D. Drioli, C. Roda, A. and Vi-

dolin, A. 2001. "Expressive Morphing for Interac-
tive Performance of Musical Scores" First Interna-
tional Conference on WEB Delivering of Music
(WEDELMUSIC`01), IEEE Computer Society.

Didkovsky, N. 1997. Shubert Impromptu Morpher.
http://www.punosmusic.com/pages/schubert/schuber
tapplet.html (16th February, 2006).

Didkovsky, N. and Burke, P. 2006. JMSL overview,
algomus.

 http://www.algomusic.com/jmsl/ (7th March, 2006).
Didkovsky, N. and Burke, P. 2004. JMSL Tutorial:

JScore Implementing your own Binary Copy Buffer
Transform, part 2.

 http://www.algomusic.com/jmsl/tutorial/jscoretoot0
7.html (16th February 2006).

Edlund, J. 2006. "Morphing Demo Server" InterAmus
Music Systems.

 http://www.interamus.com (13th April 2006).
Edlund, J. 2006. Pers. Comm. RE Game Developer's

Conference.
Edlund, J. 2004. "The Virtues of the Musifier: A Matter

of View" Interamus.
http://www.interamus.com/techTalk/musificationAn
dView.html (16th February 2006).

Glass, P. 2000. "Metamorphosis I-V" Glass Cage. Ara-
besque Recordings.

Hindemith, P. 1989. "Symphonic metamorphosis of
themes by Weber" Hindemith (CD). Cleveland,
OH, Telarc: 8-10.

Mathews, M.V. and Rosler, L. 1969. "Graphical Lan-
guage for the Scores of Computer-generated Sounds"
Music by Computers. ed, H. V. Foerster and J. W.
Beauchamp. New York: John Wiley and Sons Inc.
84-114.

Momeni, A. and Wessel, D. 2003. "Characterizing and
Controlling Musical Material Intuitively with Geo-
metric Models" Proceedings of the 2003 Conference
on New Interfaces for Musical Expression
NIME2003. Montreal, Canada. 54-62.

Oppenheim, D. 1995. "Interactive system for composi-
tional morphing of music in realtime". USA, Inter-
national Business Machines Corporation.

Oppenheim, D.V. 1995. "Demonstrating MMorph: A
System for Morphing Music in Real-time".
ICMC95 International Computer Music Confer-
ence. Banff , Canada. ICMA. 479-480.

Polansky, L. 1991. 51 Melodies. Artifact Record-
ings/Frog Peak Music.

Polansky, L. 1996. "Bedhaya Guthrie/Bedhaya Sadra for
Voices, Kemanak, Melody Instruments, and Ac-
companimental Javanese Gamelan" Perspectives of
New Music. 34. 28-55.

Polansky, L. 1987. "Distance Music I-VI for any number
of programmer/performers and live, programmable
computer music systems" Perspectives of New Mu-
sic. 25. 537-544.

Polansky, L. 2006. midifiles.demo.front, Dartmouth
college.

 http://eamusic.dartmouth.edu/~larry/midifiles.demo.
front.html (8th March 2006).

Polansky, L. 1992. "More on Morphological Mutations:
Recent Techniques and Developments" ICMC. San
Jose. 57-60.

Polansky, L. 1996. "Morphological Metrics" Journal of
New Music Research. 25. 289-368.

Polansky, L. 2005. Morphological Metrics and Muta-
tions FAQ.
http://eamusic.dartmouth.edu/~larry/mutationsFAQ.
html (15th February, 2006).

Polansky, L. and Erbe, T. 1996. "Spectral Mutation in
Soundhack" Computer Music Journal. 20. 92-101.

Polansky, L. and McKinney, M. 1991. "Morphological
Mutation Functions: Applications to Motivic
Transformations and to a New Class of Cross-
Synthesis Techniques" ICMC. Montreal.

Rosenboom, D. 1982. "The Qualities of Change: "On
Being Invisible: Steps Towards Transitional To-

pologies of Musical Form". Oakland, CA: Mills
College.

Tenney, J. and Polansky, L. 1979. "Temporal Gestalt
Perception in Music" Journal of Music Theory. 24.
205-241.

Wooller, R. 2005. Morph Music Demos. Queensland
University of Technology.
http://www.lemu.org/download.html#l2sw (4th No-
vember 2005).

Wooller, R. and Brown, A. 2005. "Investigating morph-
ing algorithms for generative music" Third Itera-
tion. Monash University, Melbourne.

Wooller, R. Brown, A.R. Miranda, E.R. Berry, R. and
Diederic, J. 2005. "A framework for comparing algo-
rithmic music systems (in press)" Symposium on
Generative Arts Practice (GAP). University of
Western Sydney.

