
HACKING MUSIC NOTATION WITH BACH AND CAGE

Associate Professor David Hirst
Melbourne Conservatorium of Music

University of Melbourne

ABSTRACT

The Composer’s Little Helper (CLH) is a Max patcher that
makes use of the “Bach” and “Cage” libraries to
manipulate and mix musical notation that has been saved
in a “shelf” as separate segments. CLH implements
musical operations such as transposition, inversion,
retrograde, plus a number of other “treatments” that use
the high-level “Cage” library for real-time computer-
aided composition.

1. CONTEXT

1.1. Introduction

This paper describes a computer software system, called
the “Composer’s Little Helper”, which can manipulate
musical notation that has been stored in sections. Written
in the Max/MSP visual programming language, the
Composer’s Little Helper (CLH) makes use of the “Bach”
library for musical notation and computer-aided
composition by Agostini & Ghisi (2015). CLH
implements musical operations such as transposition,
inversion, retrograde, plus a number of other “treatments”
that use the high-level “Cage” library for real-time
computer-aided composition by Agostini et al (2014).

1.2. Background

The Composer’s Little Helper1 sits within the realm of
“interactive composition”. In their introductory article to
a feature edition of the Journal of New Music Research on
interactive composition, Bresson and Chadabe (2017)
conclude that:

By highlighting a number of new concepts, ideas,
and challenges in working with interactivity,
among them new time paradigms, sequencing,
compositional utilities, graphical representation
and authoring of interactive processes, we hope
to encourage artistic experimentation and foster
new ideas in the art of music. (Bresson and
Chadabe, 2017: 2)

CLH aims to provide a practical illustration of the use of
compositional utilities, graphical representations, and

1 CLH software is available from https://davidhirst.me/software/

interactive composition, along with artistic
experimentation.

CLH utilises the bach library for Max. Developed by
Agostini and Ghisi (2015), bach is a Max library for
musical notation and computer-aided composition. In
their article on the library’s development, the authors
divide computer music into the two fields of digital signal
processing and the treatment of symbolic musical data.
They assert that while there have been widespread
advances in DSP algorithms and systems, the field of
treatment of symbolic musical data “seems confined to a
small number of specialist software systems” (Agostini
and Ghisi, 2015: 11). Amongst the examples they list are
the following: OpenMusic (Agon 1998), PWGL (Laurson
and Kuuskankare 2002), and Common Music (Taube
1991).

Miller Puckette has also pointed out this divide: “while
we have good paradigms for describing processes … and
while much work has been done on representations of
musical data … we lack a fluid mechanism for the two
worlds to interoperate” (Puckette, 2004: 1).

To some extent, the International Conference on
Technologies for Music Notation and Representation2
(TENOR), which has been held annually since 2015, is a
step in bridging this divide. It is against this overall
backdrop that the bach library for Max was developed,
and the CLH is an attempt at implementing a practical
system that might demonstrate one example of “bridging
the divide between signal processing and musical
representation processes” and implementing “interactive
composition”.

1.3. About Bach

The bach3 library comprises about 110 Max externals and
120 abstractions. The main goal of the bach library is the
manipulation of musical scores, represented either as
common Western notation score form (bach.score) or
piano-roll type form (bach.roll). Scores are rather complex
data structures and quite often composition software has
made use of the language Lisp to represent them. The
authors of bach for Max wanted “to allow easy exchange
of data with the major Lisp-based systems, such as …
OpenMusic and PWGL. Hence we chose to implement a
tree structure inspired by the Lisp list, called llll”

2 http://tenor-conference.org
3 http://www.bachproject.net

ACMC2018 Proceedings 23 ISSN 2206-5296

(Agostini, A. and D. Ghisi, 2015: 13). This Lisp-like
linked list can contain all the standard Max data types, to
an arbitrary level of depth, and the detail of the
relationship between bach data structures and Max data
types is set out in their comprehensive CMJ article
(Agostini, A. and D. Ghisi, 2015).

Here is a brief summary of the bach library families:

• Score editors and sequencers (bach.score,
bach.roll)

• Other User Interface Objects for Musical
Representation (bach.circle, bach.tonnetz)

• Generic Data-Processing Objects (rotation,
reversal, retrieval of general information,
insertion, substitution, operations on sets,
iteration, collection of elements, etc)

• Specialized Data-Processing Objects, designed
to operate on bach lllls (bach.expr, bach.n2mc)

• Rhythmic Quantization (bach.quantize)

• Constraint Programming, or stating “musical
formalization in terms of the qualities of the
result” (bach.constraints)

We will see how objects from these families are used in
the context of the CLH system below.

1.4. About Cage

The cage library4 is a library of abstractions built upon the
bach library. Developed with the support of the Haute
École de Musique in Geneva, cage modules “in general
perform higher-level tasks, with a compositional rather
than strictly technical connotation” (Agostini, Daubresse,
and Ghisi 2014: 308).

Cage is first and foremost a library of ready to use
modules to assist with computer aided composition. Cage
also has a pedagogical connotation in that it is entirely
built as high-level abstractions and can therefore be
viewed, analysed and modified in Max. Thirdly, cage is
highly influenced by a real-time approach to computer
aided composition: “creating and editing symbolic
musical data is not necessarily an out-of-time activity, but
it follows the temporal flow of the compositional process,
and adapts to it.” (Agostini, Daubresse, and Ghisi 2014:
308).

 Here is a brief summary of the cage library families,
with some examples of each:

• Pitch generation (cage.scale, cage.notewalk)

• Generation and treatment of melodic profiles
(cage.profile.gen, cage.profile.stretch)

• Processes inspired by electro-acoustic
practices (cage.pitchshift, cage.fm, cage.delay,
cage.granulate)

4 http://www.bachproject.net/cage/
5 http://www.tutschku.com/shadow-of-bells/

• Harmonic and rhythmic interpolation,
formalization of agogics (cage.chordinterp,
cage.rhythminterp, cage.timewarp)

• Automata, L-systems, etc (cage.chain,
cage.life, cage.lombricus)

• Musical set theory tools (cage.chroma2pcset,
cage.chroma2centroid)

• Scores – a set of modules for “editing” or
“mixing” scores (cage.rollinterp, cage.scissors,
cage.glue)

• SDIF files support – modules for reading and
writing SDIF files and manipulating or using
the data (eg. fundamental tracking to pitch
conversion)

• Audio rendering of bach scores:
cage.ezaddsynth~ (a basic additive synthesis
engine) and cage.ezseq~ (a basic sound file
sampler)

1.5. About Hans Tutschku

In 2015, German composer Hans Tutschku (2015)
produced a series of four videos that described a Max-
based system he created to produce his composition
Shadow of Bells.5 The videos outlined his compositional
method in using the bach library for Max, but without
providing all the details or the Max patcher code. These
videos provided the impetus to reproduce and extend this
working method using higher level cage Max abstractions.

2. RESEARCH QUESTIONS

The primary research question in this present study was:
Can we reproduce the system for computer assisted
composition outlined by Tutschku, but with the
enhancement of using the higher level abstractions
provided for in the cage for Max library? The processing
of music data which Tutschku described in his videos
relied more on his own idiosyncratic, text-based, lisp-like
commands, which he was able to type in. In our system,
one aim was to replace this textual way of working with
User Interface-driven methods that made best use of the
cage library.

A secondary aim was to begin to investigate whether
some extensions could be made to the system utilising the
dada library that explores graphical user interface objects,
and which are more interactive6. These dada objects are
still in their experimental phase.

3. CLH SYSTEM DETAILS

3.1. CLH overview

The the author’s system makes higher level use of the
“Cage” library to manipulate common practice western

6 http://www.bachproject.net/dada/

ACMC2018 Proceedings 24 ISSN 2206-5296

musical notation in order to create a musical work. The
CLH process begins with reading a pre-existing MIDI file
and creating segments. The segments are saved, and then
various treatments can be performed on selected segments
(transposition, retrograde, inversion, rotation, time
stretching, pitch stretching, repetition, interpolation, etc).

The treated versions are also saved into the composer’s
“shelf”. The shelf is written to disc. The next step involves
mixing the desired segments with each other. The mix can
be saved as a MIDI file or converted to a score and saved
as a Music XML file which can be read by a music
notation program to undergo further refinement and
become the final music score. CLH includes an audio
playback system to hear each score fragment as the
composition proceeds.

Figure 1. The Composer’s Little Helper (CLH) Max
patcher.

Figure 1 shows the Composer’s Little Helper Max
patcher with the overview of its structure, on the left-hand
side, consisting of the sub-patchers: CLH-segmentation,
CLH-treatment, CLH-mix, and CLH-roll2score. The
right-hand side shows the controls for a simple Global
Player. The user either employs the built in Apple MIDI
player or a VSTi instrument loaded as a plugin.

Each of these sub-patchers will now be discussed in
detail.

3.2. CLH-segmentation

Segmentation involves reading a MIDI file of a whole
piece, or even just a single motive, and segmenting it so
that the individual segments can be stored in order to be
manipulated in some way at a later stage.

In Figure 2, CLH-segmentation displays the input to
the segmentation process as a bach.roll object which is a
proportional notation representation of pitch, shown using
music staff lines, versus time, with duration depicted as
horizontal line traces. In this example, we have the first
few bars of the Debussy Prélude Book 1 Number 6 Des
pas sur la neige – purely for illustrative purposes here.
When first read, this file already has a number of markers
for bar lines and tempi. So any such markers must be
cleared using the “clearmarkers” button so that the

composer can insert her/his own. Further functionality to
clean up the input includes “merge 200” (to synchronise
attacks from a MIDI performance) and “legato extend” (to
create a more legato performance). There is also a number
field to zoom horizontally to focus on detail when adding
markers for segmentation (Entered as a percentage).

Figure 2. CLH-segmentation, showing the input music
“roll” at the top – as yet un-segmented by the composer.

Once all initial markers have been cleared, the composer
works methodically through the input music to add
markers on the “roll” window itself (using right click) – in
order to mark the desired segmentation points. The
markers can be moved around, but once happy with their
positions, the composer the clicks “dump” and the marked
segments are dumped into a temporary storage “shelf”.
This populates a drop-down menu underneath the “Roll
out” window. The composer can then select a section to
view in the bottom bach.roll area. At this stage, the shelf
of segments can be stored in a json file using the “write”
button in the Roll out controls area. Figure 3 shows a
section of the Debussy piece with markers 2, 3 and 4
placed on it. Below this is another bach.roll displaying
“sectn5” only, which has been selected in the drop-down
menu below it.

Figure 3. CLH-segmentation, showing markers placed in
the top bach.roll and a single segment in the bach.roll
underneath.

ACMC2018 Proceedings 25 ISSN 2206-5296

Sometimes, the individual note start times, or their
length, may need to be edited in the upper roll in order to
facilitate segmentation. For example: placing a marker in
the middle of a sounding note will lead to unpredictable
results. Better to shorten the note or move the marker.
Moving notes around and editing them is eminently
possible in a bach.roll window. Playback any bach.roll
through the sound system by clicking in its window and
pressing the space bar, so that you can hear your work as
it progresses. Press again to stop playback. At any stage,
the composer can save a segment as a separate MIDI file
(exportmidi) – then import and segment that. Close CLH-
segmentation when the segmentation is complete.

3.3. CLH-treatment

Treatment involves selecting a segment from the shelf
menu7, applying one or more treatments to it, giving the
new section a name, storing it to the shelf, writing the
augmented shelf to a json file, and repeat this way of
working until you have a new repertoire of segments
stored in the shelf - to be selected from and mixed at a later
date.

To begin, open the CLH-treatment subpatch, clear Roll
1 and Roll 2, read the shelf from a json file, select a
segment from the shelf drop-down menu at the top of the
CLH Treatment window (Figure 4 shows a cleared-out
treatment window before a segment has been selected
from the shelf).

Figure 4. CLH-treatment window with Roll 1 and Roll 2
cleared ready to select a segment from the shelf and apply
a treatment to it.

Once a segment has been selected and loaded into
“ROLL 1”, a treatment can be selected by opening the
“clhtreatments” sub-patch, which lies between ROLL 1
and ROLL 2. Figure 5 depicts the available treatments
such as: Inversion, Transposition, Time Warp, Pitch
Stretch, Trim Silence, Stretch Time Uniformly, Time
Shift, Rotate Roll, rit/accel, Repeat, Playpen, down to
Retrograde. Treatments are in a sequence from top to
bottom, so they can be chained together, but only in the
set order. A single treatment can be enabled via a check
box.

7 If you are returning from a break and re-starting Max, you will need to
read the json file back in to re-populate the shelf of segments.

Some treatments have a single parameter that can be
changed next to it, for example “Transpose” has the
transposition value input as a number of cents (+/- =
up/down). Other treatments, such as “Inversion”, require
the composer to open a separate GUI window to
manipulate the treatment parameters.

Figure 5. clhtreatments sub-patch with treatments listed
from top to bottom.

Figure 6. Inversion GUI with the inversion point specified
on a MIDI keyboard graphic.

Figure 6 shows the Inversion treatment GUI window,
where the inversion is performed around a pitch specified
on a keyboard graphic. The resulting inversion is shown
on the CLH-treatment window in Figure 7.

Some of the more complex treatments, such as Time
Warp and Pitch Stretch, have correspondingly complex
parameter GUIs. Pitch Stretch, which is a modified
“Through the Looking Glass Bach Tutorial”, requires the
composer to dump Roll 1 into the Pitch Stretch GUI, vary
the paraments to stretch the intervals between pitches
(keeping the rhythm the same), and then dump the result
out to Roll 2 in the CLH-treatments window (Figure 8).

ACMC2018 Proceedings 26 ISSN 2206-5296

Figure 7. The inversion around D is shown in the CLH-
treatment window.

Figure 8. Pitch Stretch GUI involves dumping ROLL 1
into it, varying parameters, and dumping the result back
to ROLL 2.

As the composer builds up a repertoire of treated
sections in the shelf menu, treated sections can be used as
the basis for further treatments. When enough treated
sections have been created, the composer writes the shelf
to a file using the “write” button on the CLH Treatment
window and closes this window to return to the overview
patcher to move on to the next phase of the process, which
is mixing.

3.4. CLH-mix

From the overview window, the composer opens the
subpatch “CLH-mix” to get access to score mixing
functionality. The idea of CLH-mix is to load two sections
of bach.roll type scores, from the respective shelf menus,
into “Roll 1” and “Roll 2”and be able to mix them in one
of four ways: Append; Mix; Interpolate; and Insert.
Clicking on “dump” results in the mixture appearing in the
“Mix” bach.roll pane. The composer can then enter a new
section name for the mix and store the mix under that
name in the shelf. Clicking “write” stores the shelf to disc.

Figure 9 shows the layout for the CLH-mix sub-patch. It
helps to clear out everything before starting to mix, and
the various “clear” and “clearmarkers” buttons facilitate

starting with a blank canvas. It is also wise to “read” the
shelf from the most recently stored json file before
commencing.

Figure 9. CLH-mix mixes Roll 1 and Roll 2 into the Mix
bach.roll via a mix method selected using radio buttons.

Note that a sub-patch called “clhmixer” contains the
GUI interface for the more exotic interpolate and insert
procedures. Figure 10 shows the opened clhmixer sub-
patch and, whilst the details of the patch may not be very
clear, the reader may be able to note that a function graph
is used to perform an interpolation between Roll 1 and
Roll 2. Time is the horizontal axis, using the roll with the
longest time. Interpolating coefficient (0 to 1) is on the
vertical axis and it is used to determine the amount of each
contributing score at each time point.

Figure 10. clhmixer performs an interpolation between
two bach.roll scores according to a specified function.

Figure 11 shows the result of an interpolation between
two sections of music represented as Roll 1 and Roll 2 (in
the Mix pane).

Liberal use of the “Append” function can result in an
entirely new piece consisting of the assembly of various
desired sections. That new assembly can, in turn, be stored
under its own name in the shelf menu, which is then saved
to a new json file using “write”. Such actions prepare the
way for the final part of the process which is turning a
complete bach.roll into a musical score.

ACMC2018 Proceedings 27 ISSN 2206-5296

Figure 11. The result of an interpolation between two
bach.rolls.

3.5. CLH-roll2score

The final sub-patch, CLH-roll2score, takes a bach.roll
representation of the composer’s final music mix and
renders it into a bach.score standard Western music
notation score, which can then be exported to a music
XML format file for further tweeking in a specialised
music notation program.

Figure 12 is a screen shot of CLH-roll2score. The
composer starts by clearing Roll 1 and Score 1, then
reading the shelf of segments from a json file. The final
“mix” is selected from the shelf menu, the score’s time
signature and a tempo can be set by editing the values in
the time signature button in the Score 1 area. Then Roll 1
is sent to Score 1 by clicking the “quantize” button in the
Roll 1 area. The score can be exported to a music XML
file and also to a MIDI file too.

Figure 12. Screen shot of CLH-roll2score.

CLH-roll2score is the least developed of all the sub-
patches, and it needs further development. Hans Tutschku
has a method of editing the bach.score using text to
represent bar number, meter and tempo. He can then
reference the bar number to set the meter and tempo in
order to render the score into a more readable form. A
similar scheme could be developed and tested for the
Composer’s Little Helper.

4. FURTHER DEVELOPMENTS AND
CONCLUSION

At the time of writing, further developments to the
Composer’s Little Helper would include the addition of
Music XML file reading and tidying up the CLH-
roll2score score creation to make a score that improves
readability. Further extensions of the system include
making more use of the “Dada” library (Ghisi & Agon,
2016) for graphic scores or generative systems. Figure 13
shows an example of the current clhtreatments sub-patch
replaced by the dada.machines object to create a network
of treatment machines like the random one shown in this
example.

Figure 13. Treatments via a dada.machine network.

5. REFERENCES

Agon, C. 1998. “OpenMusic: Un langage visuel pour la
composition musicale assiste ́e par ordinateur.” PhD
dissertation, Universite ́ Paris VI.

 Agostini, A. and D. Ghisi, 2015. “A Max Library for
Musical Notation and Computer-Aided Composition”,
Computer Music Journal, Volume 39, No. 2, p. 11–27,
2015. (Bach)

Agostini, A. Daubresse, E. and D. Ghisi, 2014. “cage: a
high-level library for real-time computer-aided
composition”, Proceedings of the International Computer
Music Conference (ICMC), Athens.

Bresson, J. and J. Chadabe. 2017. Interactive Composition:
New Steps in Computer Music Research, Journal of New
Music Research, 46:1, 1-2.

Ghisi, D. and C. Agon, 2016. “Real-Time Corpus-Based
Concatenative Synthesis for Symbolic Notation”,
Proceedings of the TENOR conference, Cambridge, UK.
(Dada)

Laurson, M., and M. Kuuskankare. 2002. “PWGL: A
Novel Visual Language Based on Common Lisp, CLOS
and OpenGL.” In Proceedings of the International
Computer Music Conference, pp. 142–145.

Puckette, M. 2004. “A Divide Between ‘Compositional’
and ‘Performative’ Aspects of Pd.” In Proceedings of the
First International Pd Convention. Available online at
puredata.info/community/conventions/convention04
/lectures/tk-puckette/puckette-pd04.pdf/at download /file.
Accessed July 2018.

ACMC2018 Proceedings 28 ISSN 2206-5296

Taube, H. 1991. “Common Music: A Music Composition
Language in Common Lisp and CLOS.” Computer Music
Journal 15(2):21–32.

Tutschku, H. 2015. “using max.bach and max.cage” Web
page with 4 videos: http://www.tutschku.com/using-max-
bach-and-max-cage/ [Accessed 17 July 2018]

ACMC2018 Proceedings 29 ISSN 2206-5296

