
EXPLORING DÍZI PERFORMANCE PARAMETERS WITH 
MACHINE LEARNING 

ABSTRACT 

In musical performance, three questions are often asked: 
what is the contribution of the instrument? What is the 
contribution of the player? Which musical exercise was 
performed?  Here, we attempt to objectively quantify 
and compare the effects of the player, instrument and 
performed exercise by analyzing audio samples collected 
from a series of musical exercises performed on the 
traditional and modernized Chinese transverse flute, 
Dízi, for 5 expert players. Feature extraction is employed 
on the samples and a machine learning classifier 
algorithm is applied to the same dataset to confidently 
identify distinct populations: firstly, separating 
traditional vs modernized Dízi, secondly, separating 
player identity, and finally identifying the musical 
exercise performed all based purely on the Dízi 
performance’s acoustic output alone. 

1. INTRODUCTION

The Chinese transverse flute, Dízi (笛子; pronounced 
[tǐt͡ sɨ]) has a long history in traditional Chinese classical 
and folk music since it was first documented in the Han 
Dynasty (206 BC-220 AD), playing essential musical 
roles both as solo instrument and also in chamber music. 
Despite its pedigree (or perhaps because of it), there has 
been minimal innovation in its design relating 
particularly to its acoustic and playing response, but in 
the last two decades, a Singaporean master Dízi-maker 
(Teck Seng Ng, one of co-authors of this paper) has 
systematically modernized the Dízi, informed by 
acoustic and performance considerations (See Figure 1) 
(Balamurali BT 2018). 

These modern instruments maintain the characteristic 
shape, timbre and fingering of the traditional Dízi (see 
Figure 1) but are described by players as having 
improved ‘control’, ‘uniformity’, ‘responsiveness’ and 
‘playability’, when compared to standard (traditional) 
Dízi. Consequently, these modern Dízi are now highly 
sought-after by professional players internationally. Of 
course, many of these perceptual qualities are subjective 
and its salience may vary from player to player.  

Therefore, in this exploratory study, we are interested 
in objectively quantifying and comparing the playability 
response of the standard (traditional) Dízi and Ng’s 
(modern) Dízi to test if there is anything qualitatively 
different or identifiable between them. To investigate, 
we asked players to perform a series of musical exercises 
on both sets of instruments, performed feature extraction 
on the audio samples collected and applied a machine 
learning classifier algorithm to determine if (a) we could 
identify two distinct populations of Dízi simply by 
comparing the Dízi's acoustic output when played by 
expert players. Further, using the same acoustic dataset 
we investigate whether it can be (b) possible to 
distinguish between players performing the exercise and 
(c) the exercise itself. We note (to our knowledge) there
is no similar previous work applying machine learning
classification to woodwind instrument performance,
particularly in these classification categories.

  The remainder of this paper is organized as follows. 
Details about data collection can be found in Section 2. 
Experimental methodology is described in Section 3. 
This section overviews extracted features and the 
classification process. Section 4 contains results 
produced as part of this investigation and finally 
conclusions in Section 5. 

Figure 1. Modern (top) and standard (bottom) Dízi in the key of C, referenced alongside the embouchure hole (first 
hole on the left). Note the superficial similarities of hole placements and external dimensions. 
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2. DATA COLLECTION

5 expert Dízi players were tasked to perform musical 
exercises on three Dízi sizes (*): ‘Low G’, ‘C’, ‘High G’ 
for both standard (traditional) and modern (Ng) Dízi. All 
6 instruments used are professional/concert-grade, and 
tuned to a reference pitch of A4 = 442 Hz. (*Note: the 
Dízi is a transposing instrument. Consequently, 
“movable doh” solfège is used here to refer to note 
name-fingerings on the Dízi, because this is how they are 
referred to in Dízi practice and tradition.) 

 The seven musical exercises performed were: 

1. Diatonic scale from the lowest to the highest
note possible, performed at 4 dynamic levels:

1.1. constant pp, soft volume
1.2. constant mf, moderate volume
1.3. constant ff, loud volume
1.4. Messa di Voce, increasing volume

gradually from pp to ff back to pp while 
sustaining a constant pitch over 6-8 
seconds with no vibrato and a stable 
embouchure 

2. Overblowing: ‘overblow’ while holding the
first four fingerings (xxx xxx; xxx xxo; xxx
xoo; xxx ooo, nominally “sol”, “la”, “ti” and
“do”) and sound the first 4-5 overtones
produced, held for 2-3 seconds.

3. Pitch bending: bend the sounded notes when
playing the “sol”, “do” and “mi” fingerings, as
low as possible, and as high as possible

4. Octave break: play smoothly (legato) over the
octave break: e.g. sol-sol’-sol; sol’-sol-sol’
(where the apostrophe indicates the upper-
octave note) for the fingerings producing “sol”,
“do” and “mi”.

       The audio recordings (near-field and far-field) were 
made in a room specially treated for excellent noise 
isolation (<20 dB re 20 µPa) and low reverberation time 
(<0.23 seconds), with condenser microphones (Rode 
NT3) placed level at 0.5 m, 1.2 m and 2.0 m away from 
the player’s mouth, along the player’s main forward axis. 
Each microphone signal was rendered into mono PCM 
WAV (44,100 Hz, 16 bits) channels and pyAudio library 
was used to extract audio features for analysis. 

3. EXERIMENTAL METHODOLOGY

Figure 2 shows the experimental methodology. A 
classifier system using ensemble learning techniques 
was trained to classify the Dízi-type, player identity and 
the musical exercise performed. Ensemble learning 
perturbs-and-combines a number of machine learning 
techniques together. Random forest, one of the powerful 

ensemble learning algorithms, was trained and tested as 
part of this investigation. The chosen classifier for this 
investigation contains a multitude of decision trees and 
has been trained using a variety of audio features 
(Giannakopoulos and Pikrakis 2014). 
     The features were labelled with the instrument 
(traditional/modern) type used, player identity and 
exercise played. In the first investigation, a trained 
classifier was used to predict if a given audio sample 
was produced by the traditional or modern Dízi. In the 
second investigation, a newly trained classifier was used 
to determine which player performed the audio sample 
in question. And in the third investigation, a classifier 
was trained to identify the musical exercise performed 

3.1. Audio Feature Extraction 

Dízi audio recordings were firstly divided into frames of 
50 ms size and for every 50 ms audio frame a number of 
‘short term’ features (i.e., features extracted from a 
short audio frame) were extracted. A 50% frame overlap 
was also incorporated. These features include mel-
frequency cepstral coefficients (MFCCs), chroma 
vectors, zero crossing rate (ZCR), energy, energy 
entropy, spectral entropy, spectral flux, spectral roll off, 
spectral spread, spectral centroid and chroma deviation 
(Giannakopoulos and Pikrakis 2014, Giannakopoulos 
2016). Altogether, 34 features were extracted for every 
audio frame. Data normalization was performed on the 
extracted features to ensure the contributions of each 
feature is proportional and this further avoid bias such 
as recording volume between recording sessions. Short 
explanation of these features can be found in the 
following section. 

3.1.1. Mel-frequency cepstral coefficients (MFCCs) 

MFCCs focus on the perceptually relevant aspects of the 
audio spectrum and are arguably the most commonly 
used audio features in the speech/speaker recognition 
arena (Muda, Begam, and Elamvazuthi 2010). Human 
perception of musical pitch is logarithmic in nature, and 
is therefore most sensitive to low and mid-range 
frequency sounds but loses its ability to distinguish 
adjacent high frequency sound. MFCCs imitate this 
perceptual characteristic by estimating energy in various 
region of audio spectrum over a set of overlapped non-
linear mel-filter bank. Mel-banks are narrow at low 
frequency and get wider at higher frequencies. In short, 
the whole extraction process of MFCCs can be 
summarized as: cosine transform of log power audio 
spectrum on a non-linear mel frequency scale (Rabiner 
and Schafer 2011, Rabiner and Juang 1993). In this 
investigation, we have used the first 13 MFCCs. 

3.1.2. Chroma Vectors 

Chroma vectors are one of the widely used features in 
music-related application and are often used to capture 

ACMC2018 Proceedings 96 ISSN 2206-5296



  

 

Figure 2 Experimental methodology 

harmonic and melodic characteristics (Peeters 2006). 
They are related to twelve equal-tempered pitch classes 
of western music. For extracting this feature, firstly, the 
discrete Fourier transform (DFT) coefficients calculated 
for a short term windowed signal is grouped into twelve 
bins. Now, chroma feature for a particular bin is 
estimated by taking the average of the respective DFT 
coefficients in that specific bin. In this investigation, we 
have used chroma vector of 12 elements long. Along 
with this chroma vector, chroma deviation was also 
extracted. Chroma deviation represents standard 
deviation of 12 chroma coefficients. 

3.1.3. Average energy 

The average energy of a short frame sequence  
 is calculated as 

                                         

where  is the number of samples in a given frame 
(i.e., frame length). Presence of audio from silence can 
be identified using this short-term feature. 

3.1.4. Zero crossing rate (ZCR) 

The rate at which sign-changes occur in an audio signal 
is given by ZCR. It is a measure of frequency content of 
a signal. DC offset in the signal, if exists, should be 
removed prior to determining ZCR. 

3.1.5. Energy Entropy 

Energy entropy can be interpreted as a measure of 
abrupt change in audio signal energy. In order to 
calculate energy entropy, an audio frame is subdivided 
into K sub-frames of fixed duration. Then energy 
content of the audio frame and every sub-frame are 
calculated by the procedure mentioned in Equation (1). 
Now, entropy is given by  

                      

where  is the ratio of energy of the  sub-frame to 
total energy of the audio frame. The entropy value will 
be low if there are sudden changes in the audio signal 
amplitude and vice-versa (Giannakopoulos et al. 2006). 

3.1.6. Spectral flux 

The spectral change between two successive frames is 
measured as spectral flux. 

3.1.7. Spectral roll-off 

Spectral roll-off measures the frequency below which 
90% of the spectral magnitude is concentrated. 

3.1.8. Spectral centroid and Spectral spread 

The center of gravity and the second central moment of 
spectrum constitute spectral centroid and spread 
respectively. 

3.1.9. Spectral entropy 

Spectral entropy is calculated in a similar way to energy 
entropy. However, here spectrum of a short-term audio 
is used instead of the original sample values. The 
spectrum of a particular audio frame is sub-divided into 
K bins (sub-bands) and energy of every sub-band is 
estimated. This sub-band energy (for e.g.    sub-band) 
is then normalized by dividing the total spectral energy 
of the frame to produce  (Shen, Hung, and Lee 1998, 
Giannakopoulos and Pikrakis 2014). Finally, spectral 
entropy is calculated as in Equation (3). 

             (3) 

3.2. Random forest classifier 

Random forest uses a multitude of decision trees. Based 
on the significance of input feature values, the decision 
trees split the given samples into many homogenous sets. 
The top-most node in a decision tree contains samples 
from the entire population and is highly non-

ACMC2018 Proceedings 97 ISSN 2206-5296



homogenous. However, homogeneity of samples in sub-
nodes increases with tree splitting.  In the case of 
random forest, decisions from many trees are considered 
as opposed to single decision tree. The final prediction 
will be that class label which most of the trees voted for 
(Seni and Elder 2010, Liaw and Wiener 2002). In this 
investigation, we used Scikit-learn random forest 
implementation (Pedregosa et al. 2011).  Ten decision 
tree estimators were considered for the random forest in 
this investigation. 

3.3. Training vs Testing Data 

In order to separate traditional vs modernized Dízi-type 
(first investigation), musical exercises performed by 
players are identified from the entire recordings. Each 
exercise was then grouped to traditional and modernized 
Dízi-type. A similar procedure has been followed to 
investigate if an audio sample was performed by a 
specific player (second investigation) and for a 
particular exercise (third investigation). However, in 
this investigation, once the musical exercises performed 
by players were identified, these exercises were grouped 
to that of specific players who created them. In the third 
investigation, the musical exercises performed replaced 
the player groups to identify a particular exercise 
performed from the audio sample. Four out of five 
players were considered for this second investigation. 
One of the players was left out because the 
corresponding raw recording contains a lot of 
extraneous artefacts and thus required a lot of effort in 
labelling a particular exercise.  

The available audio data for every investigation is 
split into two sets, a training set and a testing set. Very 
often, the proportion chosen for splitting is 70% for the 
training set and 30% for the test set and we have 
followed the same protocol in this investigation (This 
split has resulted in approximately 17500 samples for 
training and 6500 samples for testing the models for 
most of the investigations). The classification model is 
trained using the former and its performance is 
evaluated using the latter. In order to evaluate the 
realistic performance of the trained model, the test set 
chosen has never been seen by the model during 
training. Therefore, the resulting performance can be 
considered a good guide to what can be expected when 
the model is applied to unseen data. However, 
performance may be affected if the testing recordings 
happen to arise from different recording conditions or 
from non-contemporaneous sessions. This latter 
assumption has not been tested in this investigation.  

4. RESULTS

4.1. Separating traditional vs modernized Dízi 

From the investigation, it is clear that the chosen 
classifier was able to predict if an audio sample was 
produced by a traditional or modern Dízi to a high 
degree of accuracy (Table 1), ranging from 81-93%. 
The model was able to predict the type of Dízi used 
with varying degrees of accuracy based on the exercises 
performed, achieving the highest accuracy (≥90%) with 
all four scale exercises.  Nevertheless, the performance 
of other exercises was neither that inferior (≥81%). 
   The relative importance of each feature attribute was 
also computed as part of this investigation. These 
‘importance values’ can be used to enable a feature 
selection process and give some idea about why some 
exercises perform better than the rest. The top four 
features contributing to Dízi-type separation are listed in 
Table 2, with Energy being the most important. This is 
very much intuitive given the fact the scale exercise, 
especially ff, is the best among the exercises that 
separate a traditional Dízi from a modern one. 

Exercise Accuracy (%) 

Scale pp 90
Scale mf 91
Scale ff 93

Scale mdv 90
Overblow 81
Pitch Bend 87 

Octave Break 86 

Table 1. Accuracy of Dízi-type prediction by exercise. 

Top four features for Dízi-type prediction 

1 Energy
2 Chroma Deviation

3 Zero Crossing Rate 
4 Spectral Entropy

Table 2. Top 4 features for Dízi-type prediction.  

Exercise Accuracy (%) 
Scale pp 94
Scale mf 93
Scale ff 93

Scale mdv 94
Overblow 94
Pitch Bend 94 

Octave Break 90 

Table 3. Accuracy of player prediction by exercise. 
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4.2. Separating player identity 

The chosen classifier (newly trained) was able to predict 
which player generated the audio sample in question 
with a high degree of accuracy across the different 
exercises (Table 3) at ≥ 90% in all cases, with the 
majority at the 93-94% mark.  
    The high accuracy might be related to the fact that the 
number of players considered for this investigation was 
relatively small. The players were asked to perform 
using two different types of Dízi (3 traditional; 3 
modern) and this eventually models their idiosyncrasies 
while performing various exercises. Such idiosyncrasy 
vividly explains ‘intra-player’ and ‘inter-player’ 
variations (i.e., variation within a player and variation 
between players) that eventually contributed toward 
player identification.  

The most significant features contributing to player 
prediction are listed in Table 4, with entropy of energy 
being the most important here. Since the energy entropy 
value directly reflects the sudden changes in the audio 
signal amplitude, one would expect its importance in 
separating the players is related to how a particular 
player performs transitions from one part of the play to 
another, while performing a particular exercise.  

Another important result, one can infer from this 
investigation, is that the top 4 features (see Table 2 and 
4) for both the separation problem are somewhat same.
This means that the features that contain cues about the
played instruments further contain cues about player-
specific information.

Top four features for player prediction 
1 Energy Entropy
2 Energy
3 Zero Crossing Rate
4 Chroma Deviation 

Table 4. Top 4 features for player prediction. 

4.3. Separating exercises performed 

Using the chosen classifier, the seven musical exercises 
performed were also identifiable from the audio sample 
with a high degree of accuracy across the two types of 
Dízi (see Table 5) at ≥ 80%. An intuitive observation 
from this result is that, the accuracy of the exercise 
prediction is more or less the same irrespective of the 
chosen Dízi-type, indicating that they are both of 
comparable playability.  

Type of Dízi Accuracy (%) 
Traditional Dízi 82 
Modernized Dízi 83 

Table 5. Accuracy of exercise prediction by Dízi-type. 

Several exercises had similar transitions between notes 
sounded and were mostly distinguished by their volume 
and spectral characteristics (there is typically less 
variation within-exercise but large variation between-
exercise for volume and spectrum). Having said that, for 
exercises such as Messa di Voce there would necessarily 
be variation in volume within-exercise, however, energy 
or volume envelope here has a distinct signature. Since 
the values for each feature in the audio samples were 
normalized, signal volume ranges observed for each 
exercise would then solely be related to the transitions 
from one part of the exercise to another and is thus 
significant in characterizing the exercise performed. 
Looking at the top four features that contributed to 
exercise prediction (as listed in Table 6), our intuition 
was indeed right.  

Top four features for exercise prediction 
1 Energy 
2 Zero Crossing Rate 
3 Spectral Roll-off 
4 Chroma Deviation 

Table 6. Top 4 features for exercise prediction. 

5. CONCLUSIONS

As is reported in Section 4, the machine learning 
algorithm used and approach outlined in Section 3 is 
effective in both instrument/player separation as well as 
in identifying the musical exercise performed. This 
acknowledges the fact that both player and instruments 
play significant and differentiating roles in musical 
performance – the contributions of both player and 
instrument cannot be ignored. It would then give a basis 
to further investigate links between perceptual 
characteristics of the Dízi played, acoustic features 
associated with the output sound of the Dízi, and how 
expert players interact accordingly. Further, based on 
the accuracy performance of all three investigations, it 
is evident that in fact – for this sample set at least – 
players are marginally more easily discriminated than 
the instrument used or musical exercise performed. This 
offers a first-hand qualitative indicator of the relative 
roles and the interaction between player and instrument 
which is critical for advanced musical performance. 
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